Analytic Algebraic Combinatorics

Marni Mishna

Simon Fraser University *CNRS (Tours)

SFU

Nork in collaboration will Mercedes Rosas (Seville) & Sheila Sundaram (Pierrepoint,)

Kronecker Coefficients

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_\ell)$$

$$\mu = (\mu_1, \mu_2, \dots, \mu_m)$$

$$\nu = (\nu_1, \nu_2, \dots, \nu_n)$$

Kronecker Coefficients

The Kronecker coefficients $g_{\lambda,\mu,\nu}$ describe the decomposition of the tensor product of two Specht modules (irreducible representations of the symmetric group) into irreducible representations.

$$V_{\mu} \otimes V_{\nu} = \bigoplus g_{\lambda,\mu,\nu} V_{\lambda}$$

We will not revisit this definition again during the talk.

Mysterious creatures

Many longstanding open problems:

- Combinatorial interpretation
 (like Littlewood-Richardson?)
- Effective computation in the general case.
- Determine when a coefficient is zero.

(24-k, k) (24-i,i) (24-j,j)

The cone of non-zero values. Red = zero

What is known?

Many things!

- For fixed partition lengths, the function behaves like a quasipolynomial. Related to integer points in a polytope.
- This quasipolynomial is (theoretically) computable but previous results have
 high complexity in the lengths of the partitions
 - · [Baldoni, Vergne, Walter 16] (Maple package); [Christandl, Doran, Walter 12]
- Asymptotics possible using <u>Barvinok algorithm</u>
- Our contribution:
 - Minimal dimension of the polytope;
 - Explicit expressions for small cases;
 - Applying ACSV to simplify the presentation of the asymptotics.

Main result

Simple Arithmetic Formulas

New: An explicit formula

THEOREM 1 (M., Rosas, Sundaram 2018+) If $|\lambda| \le 4, |\mu| \le 2, |\nu| \le 2, \mu_2 \ge \nu_2$

$$g_{\mu,\nu,\lambda} = [y^{\nu_2}][x^{\mu_2}] \frac{P_{\lambda}(x,y)}{(1-y/x)(1-xy)(1-x)(1-y)}$$

 $P_{\lambda}(x,y) = y^{\lambda_3 + \lambda_4} (x^{\lambda_2 + \lambda_4} - x^{\lambda_2 + \lambda_3 + 1} - x^{\lambda_1 + \lambda_4 + 1} + x^{\lambda_1 + \lambda_3 + 2}) + y^{\lambda_2 + \lambda_4 + 1} (-x^{\lambda_3 + \lambda_4 - 1} + x^{\lambda_2 + \lambda_3 + 1} + x^{\lambda_1 + \lambda_4 + 1})$

COROLLARY 2 (A simple bound)

$$g_{\mu,\nu,\lambda} \le [y^{\nu_2 - \lambda_3 - \lambda_4}] [x^{\mu_2 - \lambda_2 - \lambda_4}] \frac{1}{(1 - y/x)(1 - xy)(1 - x)(1 - y)}$$

gu.v.λ

COROLLARY 3 (Quasipolynomiality)

Partition function representation

THEOREM (M., Rosas, Sundaram 2018+) If $|\lambda| \le nm$, $|\mu| \le n$, $|\nu| \le m$,

 $g_{\mu,\nu,\lambda}$ is expressible using a **computable vector partition function** of dimension at most *nm*.

$$s_{\mu,\nu,\lambda} = [u^{\nu_2} v^{\mu_2 \nu_2}] \frac{P_{\lambda}(u, uv)}{(1 - uv)(1 - uv^2)(1 - u)(1 - v)} \qquad A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \end{bmatrix}$$

r	n=2	, m n=3	n=3					$\begin{pmatrix} 1\\0\\0 \end{pmatrix}$	0 1 0	0 0 1		- ()] -]) [[0 1 1	1 1 1	0 1 2	$\begin{array}{c} 1 \\ 1 \\ 2 \end{array}$	$\begin{array}{c} 1\\ 2\\ 2\end{array}$	$ \begin{array}{c} 1 \\ 2 \\ 3 \end{array} $)									
0 0 0	0 0 0	0 0 1	0 0 1	0 0 1	0 0 1	$\begin{array}{c} 0 \\ 1 \\ 0 \end{array}$	0 1 1	0 1 1	0 1 1	0 1 1	$\begin{array}{c} 1\\ 0\\ 0\end{array}$	$\begin{array}{c} 1\\ 0\\ 0\end{array}$	1 0 1	1 0 1	$\begin{array}{c} 1 \\ 1 \\ 0 \end{array}$	$\begin{array}{c} 1 \\ 1 \\ 0 \end{array}$	1 1 1	1 1 1	1 1 1	1 1 1	$\begin{array}{c} 1 \\ 1 \\ 2 \end{array}$	$\begin{array}{c} 1 \\ 1 \\ 2 \end{array}$	$\begin{array}{c} 1 \\ 2 \\ 1 \end{array}$	$\begin{array}{c} 1 \\ 2 \\ 1 \end{array}$	$\begin{array}{c} 1 \\ 2 \\ 2 \end{array}$	$\begin{pmatrix} 1\\2\\2 \end{pmatrix}$			
1	1	0	1	1	2	0	1	1	2	1	2	2	3	0	1	1	2	1	2	2	2	3	3	3	4	3	4	4	5

Proof sketch

Schur function

 $s_{\alpha}[x_1, ..., x_n] = s_{\alpha}[X] = \frac{\det[x_i^{\alpha_j + j - 1}]}{\prod (x_i - x_j)}$

Jacobi's identity

$$s_{\lambda}[XY] = \sum_{\mu,\nu} g_{\mu,\nu,\lambda} s_{\mu}[X] s_{\nu}[Y]$$

$$\frac{\prod (x_i - x_j) \prod (y_i - y_j)}{\prod (x^i y^j - x^k y^\ell)} a_{\lambda + \delta_{nm}}[XY] = \sum_{\mu, \nu} g_{\mu, \nu, \lambda} a_{\mu + \delta_n}[X] a_{\nu + \delta_m}[Y]$$

A small, yet illustrative, example

Sample Computation

$$g_{\mu,\nu,\lambda} = [u^{\nu_2} v^{\mu_2 \nu_2}] \frac{P_{\lambda}(u, uv)}{(1 - uv)(1 - uv^2)(1 - u)(1 - v)}$$
$$P_{\lambda}(x, y) = y^{\lambda_3 + \lambda_4} (x^{\lambda_2 + \lambda_4} - x^{\lambda_2 + \lambda_3 + 1} - x^{\lambda_1 + \lambda_4 + 1} + x^{\lambda_1 + \lambda_3 + 2})$$

 $+y^{\lambda_2+\lambda_4+1}(-x^{\lambda_3+\lambda_4-1}+x^{\lambda_2+\lambda_3+1}+x^{\lambda_1+\lambda_4+1})$

Remark. If the monomial x^ay^b makes a nonzero contribution from P_{λ} , then it contributes

$$[u^{\nu_2 - b}v^{\mu_2 + \nu_2 - a - b}] \frac{1}{(1 - u)(1 - v)(1 - uv)(1 - uv^2)}$$

$$\lambda = (12, 7, 4, 1), \mu = \nu = (12, 12)$$

$$P_{\lambda} = y^5(x^8 - x^{12} - x^{14} + x^{18}) + y^9(-x^4 + x^{12} + x^{14})$$

 $g_{\mu,\nu,\lambda} = p(7,11) - p(7,7) - p(7,5) - p(7,1) - p(3,11) + p(3,3) + p(3,1)$ = 32 - 20 - 12 + 2 - 10 + 6 + 2 = 0

Combinatorial Interpretation

Lattice point enumerators of polytopes

A vector partition function

A vector partition generalizes an integer partition.

$$\begin{bmatrix} u^{n}v^{m} \end{bmatrix} \frac{1}{(1-u)(1-v)(1-uv)(1-uv^{2})}$$

= $\# \left\{ (x_{1}, x_{2}, x_{3}, x_{4}) \in \mathbb{N}^{4} : \begin{bmatrix} x_{1} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ x_{2} \end{bmatrix} + \begin{bmatrix} x_{3} \\ x_{3} \end{bmatrix} + \begin{bmatrix} x_{4} \\ 2x_{4} \end{bmatrix} = \begin{bmatrix} n \\ m \end{bmatrix} \right\}$
= $\# \{ \mathbf{x} \in \mathbb{N}^{4} | A\mathbf{x} = \begin{bmatrix} n \\ m \end{bmatrix} \}$ $A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \end{bmatrix}$

Region		$p_S(n,m)$
Ι	$m \leq n$	$\frac{m^2}{4} + m + \frac{7}{8} + \frac{(-1)^m}{8}$
II	$2n \leq m$	$\frac{n^2}{2} + \frac{3n}{2} + 1$
III	$n \le m \le 2n$	$nm - \frac{n^2}{2} - \frac{m^2}{4} + \frac{n+m}{2} + \frac{7}{8} + \frac{(-1)^m}{8}$

Vector partition function

$$\begin{bmatrix} u^{n}v^{m} \end{bmatrix} \frac{1}{(1-u)(1-v)(1-uv)(1-uv^{2})}$$
$$= \# \left\{ (x_{1}, x_{2}, x_{3}, x_{4}) \in \mathbb{N}^{4} : \begin{bmatrix} x_{1} \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ x_{2} \end{bmatrix} + \begin{bmatrix} x_{3} \\ x_{3} \end{bmatrix} + \begin{bmatrix} x_{4} \\ 2x_{4} \end{bmatrix} = \begin{bmatrix} n \\ m \end{bmatrix} \right\}$$

 $x_1 + x_3 + x_4 = n \quad x_2 + x_3 + 2x_4 = m$ $x_3 + x_4 \le n \quad x_3 + 2x_4 \le m$

p(n,m) = # integer points inside the lines.

How many integer points in the region?

 $x_3 + x_4 \le 5k$ $x_3 + 2x_4 \le 6k$

Lattice point enumerator

Ehrhart Theory (1960s)

Dilate the polytope, find the number of integer points inside.

 $x_3 + x_4 \le kn \quad x_3 + 2x_4 \le km$

$$= \left[u^{kn}v^{km}\right] \frac{1}{(1-uv)(1-uv^2)(1-u)(1-v)}$$

- For fixed *n*, *m*, this is a **quasipolynomial** in k.
- The leading constant of the polynomial is the area (Pick's theorem)
- Generalized for polytopes in arbitrary dimension.

Dilations of KCs

$$\lambda = (6,3,2), \mu = (8,3), \nu = (7,4)$$

Let us make the generating function

One interesting implication of the quasipolynomiality property is that, knowing the Kronecker coefficients asymptotically, in fact we know them completely.

— Manivel, 2014

Asymptotic formulas

Analytic Combinatorics in Several Variables

Diagonals of Rational Functions

 $\Delta(1 + x^2 + y + 5xyz + 3xy^2 + 2xy^2z^2 + 3x^2y^2z^2 + \dots)$ $= 1 + 5t + 3t^{2} + ...$

Diagonals of series

 $\Delta \sum a_{ijk} x^i y^j z^k := \sum a_{nnn} t^n$

$$\Delta^{(r,s)} \sum_{i \ge 0} a_{ij} x^i y^j := \sum_{n \ge 0} a_{rn \, sn} t^n$$

$$\Delta^{(r,s)} \frac{1}{1-x-y} = \Delta \sum_{i \ge 0, j \ge 0} \binom{i+j}{j} x^i y^j = \sum_{n \ge 0} \binom{(r+s)n}{rn} t^n$$

Generating function as a diagonal

$$\sum z^{k} [u^{kr} v^{ks}] \frac{1}{(1 - uv)(1 - uv^{2})(1 - u)(1 - v)}$$
$$= \Delta^{(r,s)} \frac{1}{(1 - uv)(1 - uv^{2})(1 - u)(1 - v)}$$

- Any lattice point enumerator is a diagonal of a rational function.
- We use ACSV techniques to determine the asymptotic growth of the coefficient

Analytic combinatorics

Problem: Given $F(x, y, z) = \frac{G(x, y, z)}{H(x, y, z)}$, write $\Delta^{(r,s)}F(x, y, z) = \sum f_n t^n$

Determine $\Phi(n)$ so that

$$\lim_{n \to \infty} \frac{f_n}{\Phi(n)} = 1$$

1. Determine "minimal critical point"

2. Decompose the rational G/H into a sum such that denominator of each summand has a transversal intersection at this point

3. Apply formulas to determine contribution at the point

Visualizing the domain of convergence

 $\{(|x|, |y|) : (x, y) \in \mathbb{C}^2, F(x, y) \text{ convergent } \}$ $\{(\log |x|, \log |y|) : (x, y) \in \mathbb{C}^2, F(x, y) \text{ convergent } \}$

 $|x| < 1 \quad |y| < 1$

 $|x| < 1 \quad |y| < 1$

The minimal critical point

Find (log|x|,log|y|) which maximizes **r log |x|+s log |y|** (with (x,y) in closure of the domain of convergence)

Exponential growth:

$$\left(\left|x\right|^{-r}\left|y\right|^{-s}\right)^{n}$$

The minimal critical point for any partition functions is (1,1,...1)

The exponential growth is always 1.

(We knew this, but here we deduced it on our own.)

Subexponential growth

- 1. Separate the rational into terms such that each has a transversal intersection at its critical point.
- 2. Apply a formula to each term.
- 3. Given (r,s), sum over contributing terms.

$$(1 - uv)(1 - uv^2)(1 - u)(1 - v)$$

1

$$=\frac{(1+v)(uv+1)}{\left(-uv^{2}+1\right)^{2}(1-u)^{2}}-\frac{(1+v)u(uv+1)}{(1-u)^{3}\left(-uv^{2}+1\right)}+\frac{(1+v)u^{2}}{(1-u)^{3}\left(-uv+1\right)}-\frac{v^{3}}{(1-v)^{2}\left(-uv^{2}+1\right)^{2}}-\frac{v^{3}}{(1-v)^{3}\left(-uv^{2}+1\right)}+\frac{v^{2}}{(1-v)^{3}\left(-uv+1\right)}$$

Splitting the rational into parts

$$\begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 2 \end{bmatrix} H1 = (1 - u) H2 = (1 - v) H3 = (1 - uv) H4 = (1 - uv^2) \\1 2 3 4$$

$$(1 - uv) = (1 - u) + u(1 - v)$$
 $H3 = H1 + uH2$

$$=\frac{(1+v)(uv+1)}{\left(-uv^{2}+1\right)^{2}(1-u)^{2}}-\frac{(1+v)u(uv+1)}{(1-u)^{3}\left(-uv^{2}+1\right)}+\frac{(1+v)u^{2}}{(1-u)^{3}(-uv+1)}-\frac{v^{3}}{(1-v)^{2}\left(-uv^{2}+1\right)^{2}}-\frac{v^{3}}{(1-v)^{3}\left(-uv^{2}+1\right)}+\frac{v^{2}}{(1-v)^{3}(-uv+1)}$$

Formula

Theorem 10.3.1 (Pemantle Wilson 2013)

$$\frac{G(x,y)}{H_1(x,y)^k H_2(x,y)^{\mathscr{C}}} = \sum_{(i,j)\in\mathbb{N}^2} a_{i,j} x^i y^j \qquad M = \begin{bmatrix} \frac{\partial H_1(x,y)}{\partial x} & \frac{\partial H_1(x,y)}{\partial y} \\ \frac{\partial H_2(x,y)}{\partial x} & \frac{\partial H_2(x,y)}{\partial y} \end{bmatrix} \Big|_{(x,y)=(1,1)}$$

$$a_{r,s} \sim \frac{1}{(k-1)!(\ell-1)!} \frac{G(x_0, y_0)}{\det(M)} \left((r, s) \times M \right)^{(k-1, \ell-1)}$$

Notation: $(x, y)^{(a,b)} := x^a y^b$

Asymptotic formulas for atomic Kronecker coefficients

$$\sum f_n z^n = \Delta^{(r,s)} \frac{1}{(1-u)(1-uv)(1-uv^2)(1-v)}$$

Easy to confirm

$$\begin{array}{ll} r < s & \frac{(rn)^2}{4} \\ r = s & (\frac{rn}{2})^2 \\ r/2 < s < r & rs n^2 - \frac{(sn)^2}{2} - \frac{(rn)^2}{4} \\ s \leq r/2 & \frac{sn^2}{2} \end{array}$$

Region		$p_S(n,m)$
Ι	$m \leq n$	$\frac{m^2}{4} + m + \frac{7}{8} + \frac{(-1)^m}{8}$
II	$2n \leq m$	$\frac{n^2}{2} + \frac{3n}{2} + 1$
III	$n \leq m \leq 2n$	$nm - \frac{n^2}{2} - \frac{m^2}{4} + \frac{n+m}{2} + \frac{7}{8} + \frac{(-1)^m}{8}$

Asymptotic formulas for general dilated Kronecker coefficients?

$$g_{\mu,\nu,\lambda} = \left[u^{\nu_2} v^{\mu_2 \nu_2}\right] \frac{P_{\lambda}(u, uv)}{(1 - uv)(1 - uv^2)(1 - u)(1 - v)}$$

- In general, we will have diagonals with a more complicated numerator
- This affects the constant term, primarily
- ... but when it is zero, the degree of the sub-exponential growth can drop.

Example

$$g_{(k,k),(k,k),(k,k)} = [x^{k}y^{k}](x^{k} - 2x^{k+1} + x^{k+2})\bar{F}_{2,2}(x,y)$$

$$= [u^{k}v^{k}]\frac{(1 - 2v + v^{2})}{(1 - u)(1 - v)(1 - uv)(1 - uv^{2})}$$

$$= \begin{cases} 1, & k \text{ even} \\ 0, & k \text{ odd} \end{cases}$$

- The numerator $(1-2v+v^2)$ is 0 at (1,1) as its derivative, (-2+2v). As a consequence, the degree drops by 2. It is "quasi-constant".
- This example illustrates that KCs are **not** pure polytope enumerators.

Perspectives

- Determine exact and asymptotic formulas for Kronecker coefficient dilations of "higher dimension"
- Combinatorial interpretation of Kronecker Coefficients
- Develop inequalities to determine when it is zero.
- Develop more automated/ computational methods for ACSV
- Many problems from representation theory are diagonal problems. Apply similar tools.

For more details...

An elementary approach to the quasipolynomiality of the Kronecker coefficients

Marni Mishna, Mercedes Rosas, Sheila Sundaram

https://arxiv.org/abs/1811.10015

