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Kronecker Coefficients

gλ,μ,ν

λ = (λ1, λ2, …, λℓ)
μ = (μ1, μ2, …, μm)
ν = (ν1, ν2, …, νn)



Kronecker Coefficients

The Kronecker coefficients               describe the 
decomposition of  the tensor product of  two Specht 
modules (irreducible representations of  the 
symmetric group) into irreducible representations.

gλ,μ,ν

Vμ ⊗ Vν = ⨁gλ,μ,νVλ

We will not revisit this definition again during the talk. 



Mysterious creatures

• Combinatorial interpretation  
(like Littlewood-Richardson?)


• Effective computation in the 
general case.


• Determine when a coefficient is 
zero.

Many longstanding open problems:

(24-k, k) (24-i,i) (24-j,j)

The cone of non-zero values. Red = zero



What is known?

• For fixed partition lengths, the function behaves like a quasipolynomial. 
Related to integer points in a polytope.


• This quasipolynomial is (theoretically) computable but previous results have 
high complexity in the lengths of the partitions


• [Baldoni, Vergne, Walter 16] (Maple package); [Christandl, Doran, Walter 12] 

• Asymptotics possible using Barvinok algorithm

• Our contribution:  

• Minimal dimension of the polytope;


• Explicit expressions for small cases; 


• Applying ACSV to simplify the presentation of the asymptotics.

Many things!

https://arxiv.org/abs/1601.04325
https://arxiv.org/pdf/1204.4379.pdf
https://www.computer.org/csdl/proceedings/focs/1993/4370/00/0366830.pdf


Main result
Simple Arithmetic Formulas



New: An explicit formula

gμ,ν,λ = [yν2][xμ2]
Pλ(x, y)

(1 − y/x)(1 − xy)(1 − x)(1 − y)

Pλ(x, y) = yλ3+λ4(xλ2+λ4 − xλ2+λ3+1 − xλ1+λ4+1 + xλ1+λ3+2) + yλ2+λ4+1(−xλ3+λ4−1 + xλ2+λ3+1 + xλ1+λ4+1)

THEOREM 1 (M., Rosas, Sundaram 2018+) 
If

COROLLARY 2 (A simple bound)

gμ,ν,λ ≤ [yν2−λ3−λ4][xμ2−λ2−λ4]
1

(1 − y/x)(1 − xy)(1 − x)(1 − y)

|λ | ≤ 4, |μ | ≤ 2, |ν | ≤ 2,μ2 ≥ ν2

COROLLARY 3 (Quasipolynomiality) g̃μ,ν,λ



Partition function representation
THEOREM (M., Rosas, Sundaram 2018+) 
If |λ | ≤ nm, |μ | ≤ n, |ν | ≤ m,

gμ,ν,λ is expressible using a computable vector partition function of 
dimension at most nm.

Proof. The degree of the the Kronecker quasipolynomial n,m,nm is bounded by the dimension of
the column space of An,m, which in turn is the co-rank or nullity of the matrix An,m. It is thus
equal to the number of columns minus the rank. By Corollary 34, this is just d.

Since Kronecker coe�cients are linear combinations of di↵erent shifts of this vector partition
function, these bounds apply in general.

The degree of n,m,nm has been obtained by Baldoni, Vergne, and Walter [BVW16, VW17]
using the language of moment maps.

In addition to being completely elementary, another advantage of our approach is that the
dimension of the polyhedral cones involved in the calculation are the minimal possible ones, as
they coincide with the degree of the quasipolynomial.

Still, the dimensions of the polyhedral cones involved grow fast. For instance, for n = 2,m = 3
we have dimension 14, and for n = m = 3 the dimension is 26. In the next example, we will explore
the faces of the polyhedral cones of the atomic Kronecker coe�cients, when the partitions have
lengths bounded by 3, 3 and 9.

2.9 The vector partition function F2,3

The domain of convergence of the vector partition function F2,3 is |x1y2| < |x1y1| < |y2| < |y1| <
|x1| < 1. F2,3 counts nonnegative integer solutions to A2,3x = n, with A2,3 equal to

0

@
1 0 0 1 0 0 1 0 1 1 1
0 1 0 0 1 1 1 1 1 2 2
0 0 1 1 1 1 1 2 2 2 3

1

A

We need the following computations for partitions �, µ, ⌫ of lengths bounded by 6,2 and 3
respectively.

S(a�+�6 [XY ]) = (x1y2)
�6(x1y1)

�5+1
y
�4+2
2 y

�3+3
1 x

�2+4
1 · 1�1+5 (31)

= (x51y
4
1y

2
2) x

�6+�5+�2
1 y

�3+�5
1 y

�4+�6
2 , (32)

S(a⌫+�3 [Y ]) = y
⌫3
2 y

⌫2
1 y1, (33)

S(aµ+�2 [X]) = x
µ2
1 . (34)

As in Section 2.3 (see the definition following Eqn. (9)), we denote by F̄2,3(x, y) the series
obtained from F2,3(x, y) by factoring out monomials from each binomial factor so that every factor

is of the form (1 � M). One then checks that the relation F2,3 = F̄2,3

x51y
3
1y

2
2
holds. Hence Eqn. (6)

becomes
F̄2,3

(x51y
3
1y

2
2)

a�+�6 [XY ] =
X

µ,⌫

gµ,⌫,�y1x
µ2
1 y

⌫3
2 y

⌫2
1 + lex. gr. terms,

or
F̄2,3 a�+�6 [XY ] = x51y

4
1y

2
2

X

µ,⌫

gµ,⌫,�x
µ2
1 y

⌫3
2 y

⌫2
1 + lex. gr. terms (35)

Truncate the alternant a�+�6 to the lexicographically least monomial, using the expression
above. The defining equation for the atomic coe�cients, Eqn. (7) of Section 2.2, now gives

F̄2,3 x
�6+�5+�2
1 y

�3+�5
1 y

�4+�6
2 =

X

µ,⌫

g̃µ,⌫,�x
µ2
1 y

⌫3
2 y

⌫2
1 ,

31

where g̃ is the atomic Kronecker coe�cient as before. Note that the initial a�ne combinations of
the parts of �, µ, ⌫ fortuitously reduce to linear combinations.

To make F̄2,3 into the vector partition function whose matrix A2,3 is given above, we need the
substitution of Theorem 33, namely x1 = s1t1, y1 = s0s1t1, y2 = s0s1t

2
1. This gives

F2,3(s0, s1, t1) =
X

µ,⌫

g̃µ,⌫,�M(µ, ⌫,�)

where the monomial M(µ, ⌫,�) is given by

t
µ2+⌫2+2⌫3�(3�6+�5+2�4+2�3+�2)
1 s

µ2+⌫2+⌫3�(2�6+�5+�4+2�3+�2)
1 s

⌫2+⌫3�(�6+�5+�4+�3)
0 .

We conclude that the atomic coe�cient is nonzero if and only if the exponents appearing in
M(µ, ⌫,�) are all nonnegative.

2.10 The vector partition function F3,3

The domain of convergence of the vector partition function F3,3 is |x2y2| < |x2y1| < |x1y2| <

|x1y1| < |y2| < |y1| < |x2| < |x1| < 1. F3,3 counts nonnegative integer solutions to A3,3x = n, with

A3,3 =

0

BB@

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2
0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 1 1 0 0 1 1 1 1 2 2 1 1 2 2
1 1 0 1 1 2 0 1 1 2 1 2 2 3 0 1 1 2 1 2 2 2 3 3 3 4 3 4 4 5

1

CCA .

The dimension of the solution space is rather large. The polytopes involved have dimension 26,
making them impossible to visualize. However, some interesting phenomena can be observed by
looking at the restriction of this system of equations to the positive orthant.

Let n = (n1, n2, n3, n4). Set n1 = n2 = n3 = 0. That is, we are counting solutions of the system
on those integer points belonging to the n4 axis. All variables corresponding to a column where
one of the first three rows has a nonzero entry should be equal to zero. The reason is that we are
only considering nonnegative linear combinations of the columns (vector partitions). We end up
counting partitions of n4 with 2 copies of 1, Example 1.

Similar arguments allows us to deduce that:

1. On the axes n1, n2 and n3 we are counting partitions with just one part equal to 1. Therefore,
�A = 1 a constant polynomial. On the other hand, on the n4 axis, we are counting partitions
with just two di↵erent copies of 1 . Therefore, �A =

⌅
k
2

⇧
+ 1, a linear quasipolynomial of

period  2.

2. On the 2-faces, generated by axes n1 and n2, and by n1 and n3, and by n2 and n3, the

restricted matrix is

✓
0 1
1 0

◆
. Therefore, �A = 1 is a constant polynomial.

On the other hand, on the 2-face generated by by axes n1 and n4, the restricted matrix is✓
0 0 1 1
1 1 0 1

◆
. Again, we get a polynomial. This time of degree 2.

Finally, on the 2-faces generated by n2 and n4, and by n3 and n4 the restricted matrix is✓
0 0 1 1 1 1
1 1 0 1 1 2

◆
. This time we obtain a quasypolynomial of degree 4 and periods

dividing 2.

32

The chamber complex is the polyhedral subdivision of the cone pos(A) which is defined as the
common refinement of the simplicial cones pos(A�), where � runs over all bases. The relation
between rational polyhedral cones and polytopes is made explicit in the following theorem.

A function g : Nn ! Q is a multivariate quasipolynomial if there exists an n–dimensional
lattice ⇤ ✓ Zn, a set {�i} of coset representatives of Zn \ ⇤, and polynomials pi 2 Q[t] such that
g(t) = pi(t), for t 2 �i + ⇤.

Theorem 5 (Blakley [Bla64], Sturmfels [Stu95]). Let A be a d ⇥ n matrix with column vectors
S = {a1,a2, . . . ,an} ✓ Nd, and let b 2 pos(A) be a parameter vector. There exists a finite
decomposition of Zd \ pos(A) such that pA(b) is a multivariable quasipolynomial of degree n� d in
each part. The number n� d is the dimension of the polytope {x |Ax = b, and xi � 0}.

More precisely, pos(A) can be decomposed into convex polyhedral subcones of cone pos(A),
the chambers, such that, for all integral vectors v inside a chamber, the function pA(v) can be
written as a fixed polynomial function of degree n � d in the variables v1, v2, · · · , vn plus a “cor-
rection polynomial” of smaller degree. The smaller correction terms depend periodically on the
values of v1, v2, · · · , vn. Note that this formulation of the results of Blakley and Sturmfels is taken
from [DL05].

We call the functions that satisfy the description appearing in Theorem 5 a piecewise quasipoly-
nomial functions.

1.5 Vector partitions with restricted parts

A vector partition of b 2 Nd is a way of decomposing b as a sum of nonzero vectors in Nd. Two
vector partitions that di↵er only in the order of their nonzero summands are considered the same,
and the number of zero vectors in the decomposition is not relevant.

We are interested in partitions whose parts (nonzero summands) belong to a fixed finite sub-
multiset of Nd. The vector partition function pS : Nd ! N is the function that evaluated at b gives
the number of vector partitions of b with parts in S.

We use the following notational shorthand: given a vector x = (x1, x2, . . . , xn) 2 Nn, we define
tx = t

x1
1 t

x2
2 . . . t

xn
n . Then, much like the univariate case, the vector partition function pS is defined

by the formal power series Y

a2S

1

1� ta
=

X

b2Nn

pS(b)t
b
.

A nonnegative integer solution x for the system of linear equation Ax = b, where A is the
d⇥ |S| matrix whose columns are the vectors in S encodes a vector partition of b. In our work, it
turns out that our matrices always contains a copy of the identity In,n.

1.6 A vector partition function

Example 6. Let pS(n,m) count the number of vector partitions of b = (n,m) with parts in
S = {(1, 0), (0, 1), (1, 1), (1, 2)}. Equivalently, this is the number of nonnegative integer solutions x
to the system Ax = b, where

A =


1 0 1 1
0 1 1 2

�
b =


n

m

�

8

gμ,ν,λ = [uν2vμ2ν2]
Pλ(u, uv)

(1 − uv)(1 − uv2)(1 − u)(1 − v)

n=2, m=3

n=m=3

n=2, m=2



Proof  sketch

sα[x1, …, xn] = sα[X] =
det[xαj+j−1

i ]
∏ (xi − xj)

sλ[XY ] = ∑
μ,ν

gμ,ν,λ sμ[X]sν[Y ]

∏ (xi − xj)∏ (yi − yj)
∏ (xiyj − xkyℓ)

aλ+δnm
[XY ] = ∑

μ,ν

gμ,ν,λ aμ+δn
[X]aν+δm

[Y ]

Jacobi’s identity

Schur function



A small, yet illustrative, example

n=m=2

∏ (xi − xj)∏ (yi − yj)
∏ (xiyj − xkyℓ)

aλ+δnm
[XY ] = ∑

μ,ν

gμ,ν,λ aμ+δn
[X]aν+δm

[Y ]

aλ+δnm
[XY ]

(1 − y/x)(1 − xy)(1 − x)(1 − y)
= ∑

μ,ν

gμ,ν,λ (xμ1+1 − xμ2)(yν1+1 − yν2)



Sample Computation
Remark. If the monomial xayb makes a non-
zero contribution from Pl, then it contributes

gμ,ν,λ = [uν2vμ2ν2]
Pλ(u, uv)

(1 − uv)(1 − uv2)(1 − u)(1 − v)

Pλ(x, y) = yλ3+λ4(xλ2+λ4 − xλ2+λ3+1 − xλ1+λ4+1 + xλ1+λ3+2)

+yλ2+λ4+1(−xλ3+λ4−1 + xλ2+λ3+1 + xλ1+λ4+1)
[uν2−bvμ2+ν2−a−b]

1
(1 − u)(1 − v)(1 − uv)(1 − uv2)

λ = (12,7,4,1), μ = ν = (12,12)

Explicitly, we have the following theorem. The polynomial in Theorem 10 is minimal in the
following sense: Example 12, appearing after the proof below, contains a combination wherein all
seven terms contribute nontrivially to the Kronecker coe�cient, and there is provably no cancella-
tion between any pairs of terms.

Theorem 10. Assume `(�)  4, and `(µ), `(⌫)  2. Also assume µ2 � ⌫2. Then the Kronecker
coe�cient gµ,⌫,� is the coe�cient of xµ2y

⌫2 in

P�(x, y)F̄2,2(x, y)

where P�(x, y) is the polynomial consisting of the seven monomials in the expansion of the polyno-
mial

y
�3+�4(x�2+�4 � x

�2+�3+1 � x
�1+�4+1 + x

�1+�3+2)

+ y
�2+�4+1(�x

�3+�4�1 + x
�2+�3+1 + x

�1+�4+1) (14)

A monomial ybxa in P� makes a nonzero contribution to gµ,⌫,� if and only if b  ⌫2 and b+a 
µ2 + ⌫2.

Remark 11. Note that if xayb is a monomial in P� which makes a nonzero contribution, that value
is [s⌫2�b

0 s
µ2+⌫2�a�b
1 ]F22 = pS(⌫2 � b, µ2 + ⌫2 � a � b) to gµ,⌫,�. This follows from the substitution

x 7! s1 and y 7! s0s1, Proposition 8 and Section 1.6. We use this equivalence in our examples
below.

Calculations of 2,2,4 were previously explicitly worked out in [BOR09a] using an identity
describing the Kronecker coe�cient as a linear combination of reduced Kronecker coe�cients
[BOR09a, Theorem 4]. Their approach di↵ers from ours, but does permit determination that
the number of chambers in the corresponding chamber complex is 74.

Before we give the proof of our theorem, we illustrate its application and demonstrate its
minimality.

Example 12. (Minimality of the polynomial in Theorem 10.) Let � = (12, 7, 4, 1), µ =
⌫ = (12, 12). From Theorem 10, the Kronecker coe�cient gµ,⌫,� is the coe�cient of x12y12 in the
product P�F̄2,2(x, y), where

P� = y
5(x8 � x

12 � x
14 + x

18) + y
9(�x

4 + x
12 + x

14).

We apply the equivalence from Remark 11:

gµ,⌫,� = pS(7, 11)� pS(7, 7)� pS(7, 5) + pS(7, 1)� pS(3, 11) + pS(3, 3) + pS(3, 1)

= 32� 20� 12 + 2� 10 + 6 + 2 = 0.

Now this example is remarkable because the Kronecker coe�cient vanishes, but there is no
cancellation between pairs of the seven coe�cients above. By definition, the atomic coe�cient
is the contribution from the lexicographically largest monomial,which in this case from y

9
x
14,

hence g̃µ,⌫,� = pS(7, 11) = 32.

We return now to the proof of Theorem 10.

14

gμ,ν,λ = p(7,11) − p(7,7) − p(7,5) − p(7,1) − p(3,11) + p(3,3) + p(3,1)

= 32 − 20 − 12 + 2 − 10 + 6 + 2 = 0



Combinatorial 
Interpretation

Lattice point enumerators of polytopes



A vector partition function

[unvm]
1

(1 − u)(1 − v)(1 − uv)(1 − uv2)

= #{(x1, x2, x3, x4) ∈ ℕ4 : [x1

0 ] + [ 0
x2] + [x3

x3] + [ x4

2x4] = [n
m]}

= #{x ∈ ℕ4 |Ax = [n
m]}

The chamber complex is the polyhedral subdivision of the cone pos(A) which is defined as the
common refinement of the simplicial cones pos(A�), where � runs over all bases. The relation
between rational polyhedral cones and polytopes is made explicit in the following theorem.

A function g : Nn ! Q is a multivariate quasipolynomial if there exists an n–dimensional
lattice ⇤ ✓ Zn, a set {�i} of coset representatives of Zn \ ⇤, and polynomials pi 2 Q[t] such that
g(t) = pi(t), for t 2 �i + ⇤.

Theorem 5 (Blakley [Bla64], Sturmfels [Stu95]). Let A be a d ⇥ n matrix with column vectors
S = {a1,a2, . . . ,an} ✓ Nd, and let b 2 pos(A) be a parameter vector. There exists a finite
decomposition of Zd \ pos(A) such that pA(b) is a multivariable quasipolynomial of degree n� d in
each part. The number n� d is the dimension of the polytope {x |Ax = b, and xi � 0}.

More precisely, pos(A) can be decomposed into convex polyhedral subcones of cone pos(A),
the chambers, such that, for all integral vectors v inside a chamber, the function pA(v) can be
written as a fixed polynomial function of degree n � d in the variables v1, v2, · · · , vn plus a “cor-
rection polynomial” of smaller degree. The smaller correction terms depend periodically on the
values of v1, v2, · · · , vn. Note that this formulation of the results of Blakley and Sturmfels is taken
from [DL05].

We call the functions that satisfy the description appearing in Theorem 5 a piecewise quasipoly-
nomial functions.

1.5 Vector partitions with restricted parts

A vector partition of b 2 Nd is a way of decomposing b as a sum of nonzero vectors in Nd. Two
vector partitions that di↵er only in the order of their nonzero summands are considered the same,
and the number of zero vectors in the decomposition is not relevant.

We are interested in partitions whose parts (nonzero summands) belong to a fixed finite sub-
multiset of Nd. The vector partition function pS : Nd ! N is the function that evaluated at b gives
the number of vector partitions of b with parts in S.

We use the following notational shorthand: given a vector x = (x1, x2, . . . , xn) 2 Nn, we define
tx = t

x1
1 t

x2
2 . . . t

xn
n . Then, much like the univariate case, the vector partition function pS is defined

by the formal power series Y

a2S

1

1� ta
=

X

b2Nn

pS(b)t
b
.

A nonnegative integer solution x for the system of linear equation Ax = b, where A is the
d⇥ |S| matrix whose columns are the vectors in S encodes a vector partition of b. In our work, it
turns out that our matrices always contains a copy of the identity In,n.

1.6 A vector partition function

Example 6. Let pS(n,m) count the number of vector partitions of b = (n,m) with parts in
S = {(1, 0), (0, 1), (1, 1), (1, 2)}. Equivalently, this is the number of nonnegative integer solutions x
to the system Ax = b, where

A =


1 0 1 1
0 1 1 2

�
b =


n

m

�

8II

III

I

n

m

Region pS(n,m)

I m  n
m2

4 +m+ 7
8 + (�1)m

8

II 2n  m
n2

2 + 3n
2 + 1

III n  m  2n nm� n2

2 � m2

4 + n+m
2 + 7

8 + (�1)m

8

Figure 5: The chambers giving the value of pS(n,m), the number of vector partitions of (n,m) with parts
in S = {(1, 0), (0, 1), (1, 1), (1, 2)}.

2 The Kronecker coe�cients

We study the quasipolynomiality of the Kronecker function using the language of symmetric func-
tions. Our main tool will be Jacobi’s original definition of a Schur function as a quotient of
alternants.

2.1 What is a Schur function?

Schur functions play a central role in the representation theory of the symmetric group, the general
linear group, and related groups.

Let � = (�1,�2, . . . ,�n) be a partition (or more generally, a vector in Nn.) The alternant
a�(x1, x2, . . . , xn) is defined as the polynomial obtained by antisymmetrizing the monomial x�. For
example, when �n = (n� 1, n� 2, . . . , 1, 0), a� is the Vandermonde determinant, and

a�n(x1, x2, . . . , xn) =
Y

1k<jn

(xj � xk).

Since a�(x1, x2, . . . , xn) is a skew-symmetric polynomial, it vanishes unless �1,�2, . . . ,�n are
all di↵erent. As a result, there is no loss in assuming that �1 > �2 > . . . > �n � 0. We write
� = ↵+ �n, where � is always a partition, possibly with repeated parts. Then,

a�[X] = a�(x1, x2, . . . , xn) = det(x
�j

i )i,j .

The Schur polynomial indexed by ↵ in the variables x1, x2, . . . , xn is defined as the quotient of
alternants:

s↵[X] = s↵(x1, x2, . . . , xn) =
a↵+�n(x1, x2, . . . , xn)

a�n(x1, x2, . . . , xn)
. (4)

As a quotient of anti-symmetric polynomials, since a↵+�n is divisible by a�n , it is the case that
s↵(x1, x2, . . . , xn) is a symmetric polynomial.

2.2 The Kronecker coproduct of Schur functions

Let µ, ⌫, and � be three partitions of the same weight such that `(µ)  n, `(⌫)  m, and `(�)  nm.
Let X = {x1, . . . , xn}, Y = {y1, . . . , ym}, and set XY = {x1y1, . . . , xnym}. Define

s�[XY ] := s�(x1y1, x1y2 · · · , xnym).

10

A vector partition generalizes an integer partition.



Vector partition function

x3 + x4 ≤ n x3 + 2x4 ≤ m

x1 + x3 + x4 = n x2 + x3 + 2x4 = m

[unvm]
1

(1 − u)(1 − v)(1 − uv)(1 − uv2)

= #{(x1, x2, x3, x4) ∈ ℕ4 : [x1

0 ] + [ 0
x2] + [x3

x3] + [ x4

2x4] = [n
m]}

p(n,m) = # integer points inside the lines. 

p(5,6) = 15 



How many integer points in the region? 

x3 + x4 ≤ 5k x3 + 2x4 ≤ 6k



Lattice point enumerator

Dilate the polytope, find the number of integer points inside. 

= [uknvkm]
1

(1 − uv)(1 − uv2)(1 − u)(1 − v)

Ehrhart Theory (1960s)

• For fixed n, m, this is a quasipolynomial in k.

• The leading constant of the polynomial is the area (Pick’s 

theorem)

• Generalized for polytopes in arbitrary dimension.

x3 + x4 ≤ kn x3 + 2x4 ≤ km



Dilations of  KCs

λ = (6,3,2), μ = (8,3), ν = (7,4)

g(6,3,2),(8,3),(7,4) = 3

g(12,6,4),(16,6),(14,8) = 7

g(18,9,6),(24,9),(21,12) = 12

gkμ,kν,kλ = [u2kvk]
1

(1 − u)(1 − v)(1 − uv)(1 − uv2)

Let us make the generating function



— Manivel, 2014

One interesting implication of the 
quasipolynomiality property is that, knowing 
the Kronecker coefficients asymptotically, in 
fact we know them completely.  



Asymptotic formulas

Analytic Combinatorics in Several Variables



 Diagonals of  Rational 
Functions

Δ(1 + x2 + y + 5xyz + 3xy2 + 2xy2z2 + 3x2y2z2 + …)

= 1 + 5t + 3t2 + …



Diagonals of  series

Δ∑ aijkxiyjzk := ∑ annntn

Δ(r,s) ∑
i≥0j≥0

aijxiyj := ∑
n≥0

arn sntn

Δ(r,s) 1
1 − x − y

= Δ ∑
i≥0,j≥0

(i + j
j ) xiyj = ∑

n≥0
((r + s)n

rn ) tn



Generating function as a diagonal

•Any lattice point enumerator is a diagonal of a 
rational function.


•We use ACSV techniques to determine the 
asymptotic growth of the coefficient

∑ zk[ukrvks]
1

(1 − uv)(1 − uv2)(1 − u)(1 − v)

= Δ(r,s) 1
(1 − uv)(1 − uv2)(1 − u)(1 − v)



Analytic combinatorics

Problem: Given                            , write 
 
Determine           so that 
 

F(x, y, z) =
G(x, y, z)
H(x, y, z)

Δ(r,s)F(x, y, z) = ∑ fntn

Φ(n)

lim
n→∞

fn
Φ(n)

= 1

1. Determine “minimal critical point” 
2. Decompose the rational G/H into a sum such that denominator 

of each summand has a transversal intersection at this point 
3. Apply formulas to determine contribution at the point 



Visualizing the domain of  convergence

1
(1 − x)(1 − y)

|x | < 1 |y | < 1

1

1

1
(1 − xy)(1 − xy2)(1 − x)(1 − y)

{(log |x | , log |y | ) : (x, y) ∈ ℂ2, F(x, y) convergent }

1

1

|x | < 1 |y | < 1

{( |x | , |y | ) : (x, y) ∈ ℂ2, F(x, y) convergent }

TEST: 
What will be the domain 
of given partition 
function?

 



The minimal critical point

1
(1 − x)(1 − y)

1

1

1
(1 − xy)(1 − xy2)(1 − x)(1 − y)

1

1

Find (log|x|,log|y|) which maximizes r log |x|+s log |y|  
(with (x,y) in closure of the domain of convergence)

( |x |−r |y |−s )n
Exponential growth:

The minimal critical 
point for any partition 
functions is (1,1,…1)

The exponential 
growth is always 1. 

(We knew this, but here we 
deduced it on our own.)(log |x | , log |y | ) : (x, y) ∈ 𝒟

log |y |

log |x |

log |y |



Subexponential growth

1. Separate the rational into terms such that each 
has a transversal intersection at its critical 
point. 


2. Apply a formula to each term. 


3. Given (r,s), sum over contributing terms.

=
(1 + v) (uv + 1)

(−uv2 + 1)2 (1 − u)2
−

(1 + v) u (uv + 1)
(1 − u)3 (−uv2 + 1)

+
(1 + v) u2

(1 − u)3 (−uv + 1)
−

v3

(1 − v)2 (−uv2 + 1)2 −
v3

(1 − v)3 (−uv2 + 1)
+

v2

(1 − v)3 (−uv + 1)

1
(1 − uv)(1 − uv2)(1 − u)(1 − v)



Splitting the rational into parts

[1 0 1 1
0 1 1 2]
1   2   3   4 

1
H1 H2 H3 H4

=
H3

H1 H2 H32 H4
=

H1 + uH2
H1 H2 H32 H4

=
1

H2 H32 H4
+

u
H1 H32 H4

(1 − uv) = (1 − u)+u(1 − v) H3 = H1 + uH2

H1 = (1 − u) H2 = (1 − v) H3 = (1 − uv) H4 = (1 − uv2)

=
(1 + v) (uv + 1)

(−uv2 + 1)2 (1 − u)2
−

(1 + v) u (uv + 1)
(1 − u)3 (−uv2 + 1)

+
(1 + v) u2

(1 − u)3 (−uv + 1)
−

v3

(1 − v)2 (−uv2 + 1)2 −
v3

(1 − v)3 (−uv2 + 1)
+

v2

(1 − v)3 (−uv + 1)



Formula

Theorem 10.3.1 (Pemantle Wilson 2013)
G(x, y)

H1(x, y)kH2(x, y)ℓ
= ∑

(i,j)∈ℕ2

ai,jxiyj

ar,s ∼
1

(k − 1)!(ℓ − 1)!
G(x0, y0)
det(M) ((r, s) × M))(k−1,ℓ−1)

M =

∂H1(x, y)
∂x

∂H1(x, y)
∂y

∂H2(x, y)
∂x

∂H2(x, y)
∂y

(x,y)=(1,1)

(x, y)(a,b) := xaybNotation:



Asymptotic formulas for atomic Kronecker 
coefficients

∑ fnzn = Δ(r,s) 1
(1 − u)(1 − uv)(1 − uv2)(1 − v)

(r, s) = (2,1) ⟹ fn ∼ n2/2
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2. Applying ACSV Theorems

We can apply the THeorem 10.3.1. also given in Equation 10.3.3.
The expression here is given for d = 2, tailored to our case. Notably, somewhat

hidden here is the exponential term from the critical point, xr

0y
s

0, since the critical
point in our case is (x0, y0) = (1, 1). In general, M is the logarithmic gradient
matrix. There is another notational shorthand: (r, s)(a,b) := r

a
s
b. Under conditions

on H1, H2 G, (r, s) that is satisfied in this case, given

G(x, y)

H1(x, y)kH2(x, y)`
=

X

(i,j)2N2

ai,jx
i
y
j

then,

ar,s ⇠
1

(k � 1)!(`� 1)!

G(x, y)

det(M)
((r, s) ⇤M))(k�1,`�1)

for large r, s.

2.1. Sample Computations. We can summarize what we apply in the above
formulas. Some boundary values are missing.

(r, s) Formula p(n) ⇠
r < s

(rn)2

4
r = s ( rn2 )2

r/2 < s < r rs n
2 � (sn)2

2 � (rn)2

4

s  r/2 sn
2

2

fn ∼



II

III

I

n

m

Region pS(n,m)

I m  n
m2

4 +m+ 7
8 + (�1)m

8

II 2n  m
n2

2 + 3n
2 + 1

III n  m  2n nm� n2

2 � m2

4 + n+m
2 + 7

8 + (�1)m

8

Figure 5: The chambers giving the value of pS(n,m), the number of vector partitions of (n,m) with parts
in S = {(1, 0), (0, 1), (1, 1), (1, 2)}.

2 The Kronecker coe�cients

We study the quasipolynomiality of the Kronecker function using the language of symmetric func-
tions. Our main tool will be Jacobi’s original definition of a Schur function as a quotient of
alternants.

2.1 What is a Schur function?

Schur functions play a central role in the representation theory of the symmetric group, the general
linear group, and related groups.

Let � = (�1,�2, . . . ,�n) be a partition (or more generally, a vector in Nn.) The alternant
a�(x1, x2, . . . , xn) is defined as the polynomial obtained by antisymmetrizing the monomial x�. For
example, when �n = (n� 1, n� 2, . . . , 1, 0), a� is the Vandermonde determinant, and

a�n(x1, x2, . . . , xn) =
Y

1k<jn

(xj � xk).

Since a�(x1, x2, . . . , xn) is a skew-symmetric polynomial, it vanishes unless �1,�2, . . . ,�n are
all di↵erent. As a result, there is no loss in assuming that �1 > �2 > . . . > �n � 0. We write
� = ↵+ �n, where � is always a partition, possibly with repeated parts. Then,

a�[X] = a�(x1, x2, . . . , xn) = det(x
�j

i )i,j .

The Schur polynomial indexed by ↵ in the variables x1, x2, . . . , xn is defined as the quotient of
alternants:

s↵[X] = s↵(x1, x2, . . . , xn) =
a↵+�n(x1, x2, . . . , xn)

a�n(x1, x2, . . . , xn)
. (4)

As a quotient of anti-symmetric polynomials, since a↵+�n is divisible by a�n , it is the case that
s↵(x1, x2, . . . , xn) is a symmetric polynomial.

2.2 The Kronecker coproduct of Schur functions

Let µ, ⌫, and � be three partitions of the same weight such that `(µ)  n, `(⌫)  m, and `(�)  nm.
Let X = {x1, . . . , xn}, Y = {y1, . . . , ym}, and set XY = {x1y1, . . . , xnym}. Define

s�[XY ] := s�(x1y1, x1y2 · · · , xnym).
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2. Applying ACSV Theorems

We can apply the THeorem 10.3.1. also given in Equation 10.3.3.
The expression here is given for d = 2, tailored to our case. Notably, somewhat

hidden here is the exponential term from the critical point, xr

0y
s

0, since the critical
point in our case is (x0, y0) = (1, 1). In general, M is the logarithmic gradient
matrix. There is another notational shorthand: (r, s)(a,b) := r

a
s
b. Under conditions

on H1, H2 G, (r, s) that is satisfied in this case, given

G(x, y)

H1(x, y)kH2(x, y)`
=

X

(i,j)2N2

ai,jx
i
y
j

then,

ar,s ⇠
1

(k � 1)!(`� 1)!

G(x, y)

det(M)
((r, s) ⇤M))(k�1,`�1)

for large r, s.

2.1. Sample Computations. We can summarize what we apply in the above
formulas. Some boundary values are missing.

(r, s) Formula p(n) ⇠
r < s

(rn)2

4
r = s ( rn2 )2

r/2 < s < r rs n
2 � (sn)2

2 � (rn)2

4

s  r/2 sn
2

2

Easy to confirm



Asymptotic formulas for general dilated 
Kronecker coefficients?

• In general, we will have diagonals with a more 
complicated numerator


• This affects the constant term, primarily ….

• … but when it is zero, the degree of the sub-exponential 

growth can drop.

gμ,ν,λ = [uν2vμ2ν2]
Pλ(u, uv)

(1 − uv)(1 − uv2)(1 − u)(1 − v)



Example

• The numerator (1-2v+v2) is 0 at (1,1) as its derivative, (-2+2v). As 
a consequence, the degree drops by 2. It is “quasi-constant”.


• This example illustrates that KCs are not pure polytope 
enumerators.

g(k,k),(k,k),(k,k) = [xkyk](xk − 2xk+1 + xk+2)F̄2,2(x, y)

= [ukvk]
(1 − 2v + v2)

(1 − u)(1 − v)(1 − uv)(1 − uv2)

= {1, k even
0, k odd .



Perspectives

• Determine exact and asymptotic formulas for 
Kronecker coefficient dilations of “higher dimension” 


• Combinatorial interpretation of Kronecker Coefficients

• Develop inequalities to determine when it is zero. 

• Develop more automated/ computational methods for 

ACSV

• Many problems from representation theory are 

diagonal problems. Apply similar tools. 



An elementary approach to the 
quasipolynomiality of the Kronecker coefficients 

Marni Mishna, Mercedes Rosas, Sheila Sundaram 
 

https://arxiv.org/abs/1811.10015


For more details…

https://arxiv.org/abs/1811.10015



