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Main idea

Relate probabilistic/combinatorial properties of a given random
walk to geometric properties of the associated spherical triangle
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Presentation of the problem

Let S ⊂ Z3 be a finite set of steps in 3D

Consider walks that start from the origin, take
their steps in S, and are confined to the positive
octant N3

Questions

• Determine o(n), the number of such walks that have length n

• or o(i , j , k ; n) the number of walks that have length n and
end at position (i , j , k)

• or the associated 4-variable generating function:

O(x , y , z ; t) =
∑

i ,j ,k,n>0

o(i , j , k; n)x iy jzktn

• or the nature of this generating function
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A hierarchy of power series

The formal power series A(t) is ...

• ... rational if it can be written, with P(t) and Q(t) polynomials

A(t) =
P(t)

Q(t)

• ... algebraic if it satisfies a (non-trivial) polynomial equation

P(t, A(t)) = 0

• ... D-finite if it satisfies a (non-trivial) linear differential equation

Pk(t)A(k)(t) + · · ·+ P0(t)A(t) = 0

+ extension to several variables + closure properties



Lattice paths confined to convex cones

1D: walks confined to the > 0 half-line

The generating function H(x ; t) is algebraic

[Gessel 80], [Labelle-Yeh 90], [Bousquet-Mélou-

Petkovšek 00], [Duchon 00], [Banderier-Flajolet 02]
time

i

2D: walks confined to the > 0 quadrant

The generating function Q(x , y ; t) is sometimes
algebraic, D-finite, non-D-finite
Complete classification for walks with small
steps: S ⊂ {1̄, 0, 1}2 i

j

A rich literature

Bernardi, Bostan, Bousquet-Mélou, Chyzak, Cori, Denisov, Dulucq,

Fayolle, Gessel, Gouyou-Beauchamps, Guy, Janse van Rensburg, Johnson,

Kauers, Koutschan, Krattenthaler, Kurkova, Kreweras, Melczer, Mishna,

Niederhausen, Petkovšek, Prellberg, R., Rechnitzer, Sagan, Salvy,

Viennot, Wachtel, Wilf, Yeats, Zeilberger...
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The number of interesting 3D distinct models

Rest of the talk: small step case

S ⊂ {1̄, 0, 1}3 \ {(0, 0, 0)} — only 226 such problems!

Reduction of the number of models

Remove

• models in which all steps are non-negative (rational)

• models in which one positivity condition implies the other two
(∼ walks in a half-space =⇒ algebraic)

• models in which one step is never used

and declare equivalent models that only differ by a permutation of
the coordinates

Proposition

One is left with 11 074 225 ' 223.4 distinct models
[Bostan-Bousquet-Mélou-Kauers-Melczer 16]



The group of the walk in 2D

[Fayolle-Iasnogorodski-Malyshev 99], [Bousquet-Mélou-Mishna 10]

Take the example of the tandem queue
S = {N, W, SE}

Observation

The jump polynomial reads

S(x , y) = x + y + xy

S(x , y) is left unchanged by the rational transformations

Φ : (x , y) 7→ (xy , y) and Ψ : (x , y) 7→ (x , xy)

They are involutions, and generate a finite group G :

{(x , y), (xy , y), (xy , x), (y , x), (y , xy), (x , xy)}

A general construction

The group is not always finite
S = {S, W, SW, NE}

Φ : (x , y) 7→ (xy(1 + y), y) and Ψ : (x , y) 7→ (x , xy(1 + x))
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The group in 3D

An example

Take S = {1̄1̄1̄, 1̄1̄1, 1̄10, 100}. The jump polynomial is

S(x , y , z) = xyz + xyz + xy + x

The group G is generated by

• [x , y , z ]
Φ7−→ [x(y + yz + yz), y , z ]

• [x , y , z ]
Ψ7−→ [x , y(z + z), z ]

• [x , y , z ]
Λ7−→ [x , y , z ]

It has order 8

Classification

11 074 225 = 165 962 (|G | <∞) + 10 908 263 (|G | =∞)
[Bostan-Bousquet-Mélou-Kauers-Melczer 16], [Kauers-Wang 17]
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Relevance of the group size and a toolbox

A toolbox in the finite group case (2D and 3D)

• Write a functional equation for

O(x , y , z ; t) =
∑

i ,j ,k,n>0

o(i , j , k ; n)x iy jzktn

• Determine if the group of the walk is finite

• If it is, form the orbit equation

• And try to extract the generating function O(x , y , z ; t)

[Bousquet-Mélou-Mishna 10], [Bostan-Bousquet-Mélou-Kauers-Melczer

16], [Kauers-Wang 17], [Yatchak 17]

Infinite group case in 3D

• Apart from the functional equation, no result so far
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Asymptotics of the excursion sequence

Standard Brownian motion in cones C

• Persistence probability Px [τC > t]
• Local limit theorem Px [τC > t, Bt ∈ K ]

[DeBlassie 87], [Bañuelos-Smits 97]

(heat kernel estimates on manifolds)

RW in cones C ⊂ RD : local limit theorem

o(i , j , k ; n) ∼ κ · V (i , j , k) · ρn · n−α

with α =
√
λ1 + (D2 − 1)2 + 1 and λ1 is the smallest eigenvalue of

the Dirichlet problem{
∆SD−1m = −λm in C ∩ SD−1

m = 0 in ∂(C ∩ SD−1)

C ∩ SD−1 section of the cone on the sphere [Denisov-Wachtel 15]
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Critical exponents in 2D and wedges

From the quarter plane to an arbitrary wedge

Initial model Remove drift Covariance identity

(Quadrant) (Quadrant) (Wedge opening β)

Critical exponent α = 1 + π
β [Denisov-Wachtel 15]

Consequences

α rational iff group finite iff Q(x , y ; t) D-finite [Bostan-R-Salvy 14]



Critical exponents in 3D and spherical triangles

Transformation of N3 (drift = 0 and covariance = identity)

(Orthant N3) (Cone A · N3)

Spherical triangles arise as the sections (A · N3) ∩ S2

π
2

π
2

π
2

β

δ
ε



Dirichlet eigenvalues of spherical triangles 1/3

Warm-up: spectrum of flat triangles

(Equilateral) (Half-equil.) (Generic)

Spectrum known known unknown

Remarkable family of spherical triangles with known spectrum

[Bérard 83] Consider triangles with angles(
π

p
,
π

q
,
π

r

)
, p, q, r ∈ N \ {0, 1}

Only possible triplets are

• (2, 3, 3) tetrahedral group
• (2, 3, 4) octahedral group
• (2, 3, 5) icosahedral group
• (2, 2, r) dihedral group or order 2r > 4



Dirichlet eigenvalues of spherical triangles 2/3

Tilings of the sphere

• (2, 3, 3)
tetrahedral group

• (2, 3, 4)
octahedral group

• (2, 3, 5)
icosahedral group

• (2, 2, r)
dihedral group



Dirichlet eigenvalues of spherical triangles 3/3

A (the?) non-trivial soluble case: birectangular triangles

β

π
2

π
2

• Dirichlet problem{
∆S2m = −λm in S2 ∩ C

m = 0 in ∂(S2 ∩ C )

• Smallest eigenvalue: λ1 = (πβ +1)(πβ +2)
[Walden 74]

• SRW in 3D: β = π
2 and λ1 = 12

Generic case

β

δ
ε

• No closed-form formula known

• Is there a miracle for Kreweras?
(β = δ = ε = 2π

3 )
Tetrahedral tiling of the sphere
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Summary of the results

Relate combinatorial properties of a given model to geometric
properties of the associated spherical triangle

Group of the walk and reflection group

• Finite group G ←→ Tiling group

• Commutation relation ←→ Angle commensurable with π

Hadamard models

• Hadamard models ←→ Birectangular spherical triangles

Irrationality results

• Infinite group Hadamard models ←→ Non-D-finite

Numerical analysis

• Approximation of the principal eigenvalue λ1

Other random processes and other cones

• Critical exponent for Brownian motion

• Eigenvalues of other cones (e.g., spherical cap)
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Another view on the classification of the group G

Classification of infinite group models
Group Number of models Group Number of models

G1 = 〈a, b, c | a2, b2, c2〉 10,759,449 G7 = 〈a, b, c | a2, b2, c2, (ab)4〉 82

G2 = 〈a, b, c | a2, b2, c2, (ab)2〉 84,241 G8 = 〈a, b, c | a2, b2, c2, (ab)3, (bc)3〉 30

G3 = 〈a, b, c | a2, b2, c2, (ac)2, (ab)2〉 58,642 G9 = 〈a, b, c | a2, b2, c2, acbacbcabc〉 20

G4 = 〈a, b, c | a2, b2, c2, (ac)2, (ab)3〉 1,483 G10 = 〈a, b, c | a2, b2, c2, (ab)3, (cbca)2〉 8

G5 = 〈a, b, c | a2, b2, c2, (ab)3〉 1,426 G11 = 〈a, b, c | a2, b2, c2, (ca)3, (ab)4, (babc)2〉 8

G6 = 〈a, b, c | a2, b2, c2, (ac)2, (ab)4〉 440 G12 = 〈a, b, c | a2, b2, c2, (ab)4, (ac)4〉 4

[Kauers-Wang 17]

Classification of finite group models

Group Hadamard Non-Hadamard OS 6= 0 Non-Hadamard OS = 0
Z2 × Z2 × Z2 1852 0 0

D12 253 66 132
Z2 × D8 82 0 0

S4 0 5 26
Z2 × S4 0 2 12

[Bacher-Kauers-Yatchak 16]

Interpretation on the reflection group

• A relation (ab)m = 1 corresponds to an angle n
mπ

• In particular, Hadamard models correspond to G3



An interesting Hadamard structure

Definition: a decomposition of S(x , y , z) =
∑

(i ,j ,k)∈S x iy jzk

• Type (1, 2): S(x , y , z) = U(x) + V (x)T (y , z)

• Type (2, 1): S(x , y , z) = U(x , y) + V (x , y)T (z)

Extends the notion of independent random walks

An example

Take S(x , y , z) = x + (1 + x + x)(yz + y + z)

The group has order 12

D-finite generating function by
[Bostan-Bousquet-Mélou-Kauers-Melczer 16]

[Bostan-Bousquet-Mélou-Melczer 18]
· • ·
• · ·
· · •

· • ·
• ·
· · •

· • ·
• • ·
· · •

Generating function as Hadamard product O = Q � H



Hadamard models: exact computation of λ1

Reminders

• Type (1, 2): S(x , y , z) = U(x) + V (x)T (y , z)

• Type (2, 1): S(x , y , z) = U(x , y) + V (x , y)T (z)

• Their spherical triangles are birectangular

Type (1, 2): a unified result

If the group associated to the step set T is infinite, the series
O(0, 0, 0; t) (and thus also O(x , y , z ; t)) is non-D-finite

Type (2, 1): mixture of two 2D laws

Let T ′(z0) = 0. If the critical exponent of the mixture
U(x , y) + V (x , y)T (z0) is not in Q, O(0, 0, 0; t) is non-D-finite

Example: any mixing of and is non-D-finite

Asymptotic counting of quadrant walks with inhomogeneities
[D’Arco-Lacivita-Mustapha 16]
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The very intriguing Kreweras 3D model

Finite group but non-D-finite? Estimation of λ1

• [5.15,5.16] [Costabel 08]

• 5.159 [Ratzkin-Treibergs 09]

• 5.1606 [Balakrishna 13]

• 5.1589 [Bostan-R-Salvy 14]

• 5.1591452 [Bacher-Kauers-Yatchak 16]

• 5.159145642466 [Guttmann 17]

• 5.159145642466 [Bogosel-Perrollaz-R-Trotignon 18]

Some further aspects

No diff. equation of order r with polynomial coefficients of degree d for
any r and d such that (r + 2)(d + 1) < 2000

Extends to finite group models with no Hadamard structure and zero
orbit-sum



Other open problems

• Tutte’s invariant approach for 3D models

• Non-D-finiteness results beyond the Hadamard structure

• Express D-finite length generating functions in terms of
hypergeometric series [Bostan-Chyzak-van Hoeij-Kauers-Pech 17]

• Closed-form expression for eigenvalues



Step-by-step construction and functional equation in 2D

Take the example of the tandem queue
S = {N, W, SE}

Generating function

Q(x , y ; t) ≡ Q(x , y) =
∑

i ,j ,n>0

q(i , j ; n)x iy j tn

Functional equation

Q(x , y) = 1 + tyQ(x , y) + t
Q(x , y)− Q(0, y)

x
+ tx

Q(x , y)− Q(x , 0)

y

A simple exclusion-inclusion proof

[Bousquet-Mélou-Mishna 10]
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A kernel functional equation in 2D

A linear discrete partial differential equation

Q(x , y) = 1 + tyQ(x , y) + t
Q(x , y)− Q(0, y)

x
+ tx

Q(x , y)− Q(x , 0)

y

A kernel equation with catalytic variables

With x = 1/x and y = 1/y ,{
1− t(y + x + xy)

}
Q(x , y) = 1− txQ(0, y)− txyQ(x , 0)

or equivalently{
(1− t(y + x + xy)

}
xyQ(x , y) = xy − tyQ(0, y)− txQ(x , 0)

We call K (x , y) = 1− t(y + x + xy) the kernel of the equation
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The kernel functional equation in 3D

An example

• Take S = {1̄1̄1̄, 1̄1̄1, 1̄10, 100}. The functional equation reads

O(x , y , z) =1 + t(xyz + xyz + xy + x)O(x , y , z)

− tx(y + yz + yz)O(0, y , z)− txy(z + z)O(x , 0, z)− txyzO(x , y , 0)

+ txy(z + z)O(0, 0, z) + txyzO(0, y , 0) + txyzO(x , 0, 0)

− txyzO(0, 0, 0)

• Equivalently,

K(x , y , z)xyzO(x , y , z) = xyz − tyz(y + yz + yz)O(0, y , z)− tz(z + z)O(x , 0, z)

− tO(x , y , 0) + tz(z + z)O(0, 0, z) + tO(0, y , 0) + tO(x , 0, 0)− tO(0, 0, 0),

with kernel

K (x , y , z) = 1− t(xyz + xyz + xy + x)

An idea of the complexity (even in D-finite cases)

Determine O(x , y , z ; t) up to a large order (in t) and try to guess
if it is algebraic or D-finite (order ' 50 and degree ' 3000 is not
unusual)
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O(x , y , z) =1 + t(xyz + xyz + xy + x)O(x , y , z)

− tx(y + yz + yz)O(0, y , z)− txy(z + z)O(x , 0, z)− txyzO(x , y , 0)

+ txy(z + z)O(0, 0, z) + txyzO(0, y , 0) + txyzO(x , 0, 0)

− txyzO(0, 0, 0)

• Equivalently,

K(x , y , z)xyzO(x , y , z) = xyz − tyz(y + yz + yz)O(0, y , z)− tz(z + z)O(x , 0, z)

− tO(x , y , 0) + tz(z + z)O(0, 0, z) + tO(0, y , 0) + tO(x , 0, 0)− tO(0, 0, 0),

with kernel

K (x , y , z) = 1− t(xyz + xyz + xy + x)

An idea of the complexity (even in D-finite cases)

Determine O(x , y , z ; t) up to a large order (in t) and try to guess
if it is algebraic or D-finite (order ' 50 and degree ' 3000 is not
unusual)



An interesting Hadamard structure (continued)

An example (continued)

S(x , y , z) = x + (1 + x + x)(yz + y + z) · • ·
• · ·
· · •

· • ·
• ·
· · •

· • ·
• • ·
· · •

Construction of an octant walk of length n with steps in S

• Take a 1D walk h = h1 ... hn with steps in {1̄, 0, 1, 1} on the
x-axis; say it has ` black steps

• Take a quadrant walk q = q1 ... q` with steps in {11, 1̄0, 01̄}
in the yz-plane

• In h, replace hi by (hi , 0, 0) if hi is red, by (hi , qj) if hi is the
jth black step of h

Hadamard product of generating functions O = Q � H

D-finiteness of O(x , y , z ; t) follows from the D-finiteness of the
generating functions H(x ; t) and Q(y , z ; t) of the two projected
walks



Computation of the Eigenvalue

1. Construct the mesh

(successive midpoint refinements)
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Computation of the Eigenvalue

2. Construct eigenvalue problem

• K , M matrices of rigidity and mass — Lagrange P1 finite
elements

• Generalized eigenvalue problem (eigs in Matlab)

Ku = λMu

• Dirichlet boundary condition: penalize diagonal terms in K
corresponding to the boundary

K 7→ K + 1e16 · diag(χ∂T )



Examples of computation

1. Three right angles

Approx Exact
197377 points: 12.0001029159 12
787969 points: 12.0000257290 12

3148801 points: 12.0000064323 12
12589057 points: 12.0000016085 12



Examples of computation

2. Tetrahedral partition

Approx
197377 points: 5.15918897549
787969 points: 5.15915647773

3148801 points: 5.15914835159
12589057 points: 5.15914632003



More precision

[The SIAM 100-Digit Challenge] — nice reference: accuracy in numerical computation

• Rather slow convergence

• Try to use convergence acceleration techniques

• Wynn’s epsilon algorithm: recover the exact limit for the sum
of n geometric sequences, given 2n + 1 terms

• Increase the speed convergence by eliminating terms in the
Taylor decomposition of the error



More accurate results

Compute λ1 for discretizations corresponding to h, h/2, h/22, etc.
Extrapolate this sequence...

1. Three right angles

Exact value: 12
Best using finite elements: 12.00000160856720

Using extrapolation: 11.99999999999946



More accurate results

Compute λ1 for discretizations corresponding to h, h/2, h/22, etc.
Extrapolate this sequence...

2. Three angles equal to 2π/3

Best using finite elements: 5.1591463200323471
Using extrapolation: 5.1591456424704827

→ coincides with best known estimates in the literature



Equivalent representations of 3D models

Kreweras 3D model, a (1, 2)-type Hadamard model and a
(2, 1)-type Hadamard model. Cross-section views may be easier to
read:

· · ·
· • ·
· · ·

· • ·
• ·
· · ·

· · ·
· · ·
· · •

• · •
· • •
• • ·

• · •
· •
• • ·

• · •
· • •
• • ·

• · •
· · •
• • ·

· • ·
• •
· • ·

• · •
· · •
• • ·

(i , j ,−1) (i , j , 0) (i , j , +1)



1D and 2D walks: from Kindergarden to PhD


	Introduction
	Asymptotics of excursions and eigenvalues of spherical triangles
	Our results
	Conclusion and perspectives
	Numerical analysis

