A Geometric Approach for the Computation of Riemann-Roch Spaces : Algorithm and Complexity

Aude Le Gluher and Pierre-Jean Spaenlehauer Université de Lorraine / INRIA Nancy – Grand Est / CNRS CARAMBA team

SPECFUN team, 2019

Ínna-

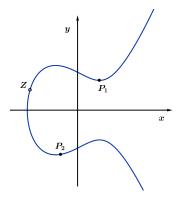
Setup : the Riemman-Roch Problem

- **K** : sufficiently large perfect field.
- C : irreducible projective nodal curve with r nodes, described by $Q \in \mathbf{K}[X, Y]$.

Setup : the Riemman-Roch Problem

 ${\bf K}$: sufficiently large perfect field.

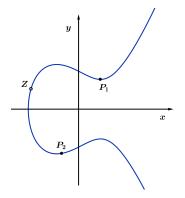
C : irreducible projective nodal curve with r nodes, described by $Q \in \mathbf{K}[X, Y]$.



Setup : the Riemman-Roch Problem

 \mathbf{K} : sufficiently large perfect field.

C : irreducible projective nodal curve with r nodes, described by $Q \in \mathbf{K}[X, Y]$.



 $\begin{array}{l} \mbox{Goal} &: \mbox{ find all functions} \\ R(X,Y)/S(X,Y) \in \mathbf{K}(C) = \\ \mbox{Frac}(\mathbf{K}[X,Y]/(Q)) \mbox{ such that }: \\ \begin{cases} R(Z) = 0 \\ S \mbox{ may cancel at } P_1 \\ S \mbox{ may cancel at } P_2 \\ \mbox{ no poles at infinity} \end{cases}$

Prescribed zeroes, authorized poles

Riemann-Roch spaces are vector spaces useful in particular for :

- Computing the group law of the Jacobian of a curve. Volcheck (1994), Huang et lerardi (1994), Khuri-Makdisi (1995).
- Building algebraic geometric error-correcting codes. Goppa (1983), Haché (1995).
- Integration of algebraic functions. Davenport (1981).

State of the art

Here, C is a curve of degree d and genus g and $D = D_+ - D_-$ is a divisor on C. Computation of general Riemann-Roch spaces :

- Huang and lerardi (1994) : geometric algorithm in $O(d^6 \deg(D_+)^6)$.
- Haché (1995).
- Hess's arithmetic algorithm (2002).

Computation of the group law in Jacobians $(\deg(D_+) = O(g))$:

- Volcheck (1994) : arithmetic algorithm in $O(\max(d,g)^7)$.
- Khuri-Makdisi (2007) : algorithm in O(g^{ω+ε}) where ω is a feasible exponent for matrix multiplication and ε > 0.
- Possible improvements for specific curves (for instance O(g) for hyperelliptic curves, Cantor).

Main results

- Variant of the Brill-Noether algorithm : geometric probabilistic algorithm for computing Riemann-Roch spaces in the case of divisors not involving singular points. Mild assumption when the curve is singular.
- Bound on the probability of failure :

 $O(\max(\deg(C)^4, \deg(D_+)^2)/|E|)$

where E is a finite subset of **K** in which we can pick elements at random uniformly.

• Proof of complexity :

Number of arithmetic operations in \mathbf{K} bounded by :

 $O(\max(\deg(C)^{2\omega},\deg(D_+)^{\omega}))$

where $\boldsymbol{\omega}$ is a feasible exponent for matrix multiplication.

• C++/NTL implementation of this algorithm.

Plan

1 Algorithm

- Input and requirements
- The Brill-Noether algorithm

Divisors and the Riemann-Roch problem

- A divisor D on C is a formal sum with integer coefficients of closed points.
- The divisor associated to a function $g \in \mathbf{K}(C)$ is the divisor for which the coefficient of $P \in C$ is the valuation of g in P.
- The nodal divisor E is the divisor of degree 2r which is the sum of the points that project to a node.
- The Riemann-Roch space associated to the divisor D is

$$L(D) = \{f \in \mathsf{K}(C) \setminus \{0\} | (f) \geq -D\} \cup \{0\}$$

Keep in mind

When writing $D = D_+ - D_-$, the divisor D_+ constrains the poles of $f \in L(D)$ and D_- constrains its zeroes.

Input :

- A polynomial $q \in \mathbf{K}[X, Y]$ describing an irreducible projective plane curve C.
- The representation of the nodal divisor *E*.
- The representations of two effective smooth divisors D_+ and D_- .

Output : A basis of the vector space L(D) where $D = D_+ - D_-$.

(Mild) assumptions on the input

- The polynomial q is monic in Y.
- The degree in Y of q equals its total degree.

Mild assumptions because...

This can be enforced by a linear change of coordinates.

- No singular point in the input divisor $D = D_+ D_-$.
- There exists a form h of a chosen degree d such that $(h) \ge D_+ + E$ and (h) E does not involve any singular point.

Goal of these assumptions

We want singularities to have a minimal impact on computations.

Construction of a suitable denominator

Common denominator of degree d.

 \longrightarrow Choose a random polynomial h of degree d which vanishes with the right multiplicities at all points prescribed by $D_+ + E : h$ is solution of an underdetermined linear system.

 \longrightarrow Computation of a representation for the effective divisor (h) - E.

About the degree of h

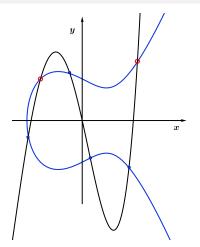
The degree d is tuned to be as small as possible while guaranteeing an underdetermined linear system. We have :

$$d < \frac{\deg(D_+) + r}{\deg(C)} + \deg(C)$$

Why bother with E?

We need h to vanish at singularities to use Brill-Noether residue theorem.

Readjusting the zeroes



Non exact interpolation : h has non desired smooth zeroes.

 $\longrightarrow Find those non desired zeroes :$ $they are represented by <math>[(h)-E]-D_+$. $\longrightarrow Add them to D_-.$

Counterbalance the unwanted zeros of the denominator by the same zeros for the numerators.

Importance of our singular assumption

We assume (h) - E does not involve any singular point of C.

From last step : $D' = D_- + [(h) - E] - D_+ + E$ imposes the zeros of numerators.

 \longrightarrow Computation of a base *B* of polynomials of degree at most deg(*h*) and vanishing at all points prescribed by *D'* with the right multiplicities : again a linear system.

Correction of the algorithm

The set $\{b/h \mid b \in B\}$ is a base of the Riemann-Roch space L(D).

Proof : Vect $(\{b/h \mid b \in B\}) \subset L(D)$ by construction. The converse uses the Brill-Noether residue theorem.

- Choose an interpolating polynomial *h* as denominator.
- Compute the representation of the smooth part of (h).
- Identify the unwanted zeros of *h*.
- Find the new constraints on the zeroes of numerators.
- Compute a base of numerators.

Plan

2 Representation of divisors

- Polynomial representation
- Operations on divisors

What do we represent?

We represent effective divisors D with no singular points.

The representation of D is :

- Similar to Mumford Coordinates in the case of hyperelliptic curves,
- Encodes the effective divisor by univariate polynomials (Giusti, Lecerf, Salvy, 1999). In particular :
- Finds a univariate polynomial *x* such that K[C]/(I) ≅ K[S]/*x*(S) where I is an ideal such that K[C]/(I) is the description of the algebraic set corresponding to the support of D.

An effective divisor D is represented by $(\lambda, \chi, u, v) \in \mathbf{K} \times \mathbf{K}[S]^3$ such that :

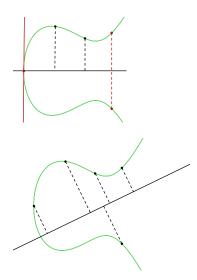
• The degree of χ is the degree of D and deg(u), deg(v) < deg(D).

$$(u(S), v(S)) \equiv 0 \mod \chi(S).$$

$$\lambda u(S) + v(S) = S.$$

• GCD
$$\left(\frac{\partial q}{\partial X}(u(S), v(S)) - \lambda \frac{\partial q}{\partial Y}(u(S), v(S)), \chi(S)\right) = 1.$$

Illustration of the representation



Potential problems :

- Points of the divisor with the same projection.
- Tangents to the curve perpendicular to the direction of projection at some divisor points.

Solution : Find a suitable direction of projection.

Warning Such a representation does not always exist ! BUT It does exist if the field K is large enough.

Idea of the proof :

- The λ ∈ K such that λX + Y is not a primitive element of K[C]/(m) where m is a maximal ideal representing a point P of C are finite.
- Build representations for each point P involved in the divisor by finding primitive elements of the form $\lambda X + Y$ for $\mathbf{K}[C]/(m)$.
- Lift those representations thanks to Hensel's lemma to encode multiplicities.
- Use the CRT to find the final representation.

Our algorithm requires us to know how to :

- Sum two representations.
- Subtract two representations (knowing that the result will remain an effective divisor).
- Compute the representation of the divisor (h) E.

Remark

The first two operations require the two input representations to agree on a common λ . Need to change the primitive element (Giusti, Lecerf, Salvy, 1999).

In practice, if ${\bf K}$ is large enough, a random choice of λ should work :

 \longrightarrow By default, choose $\lambda = 0$.

 \longrightarrow If an error occurs at some point (bad λ), choose another λ and restart the computations from the top instead of changing the primitive element as we go.

Example : the subtraction

Input : Two representations $(\lambda, \chi_1, u_1, v_1)$ and $(\lambda, \chi_2, u_2, v_2)$ of effective smooth divisors D_1 and D_2 .

Output : The representation of $D_1 - D_2$ if this divisor remains effective.

Algorithm :

- Suppress the common factors of χ_1 and χ_2 by computing $\chi = \chi_1/GCD(\chi_1,\chi_2)$
- Reduce u_1 and v_1 modulo χ .
- Return (λ, χ, u, v) .

Main idea

With this representation, operations on divisors are operations on univariate polynomials.

Failure = bad choice for the λ used to represent divisors.

Bound on the probability of failure

Assuming we can choose elements of K uniformly at random in a finite subset $E \subset K$, the probability that our algorithm fails is bounded above by

 $O(\max(\deg(C)^4, \deg(D_+)^2)/|E|)$

Idea of the proof : The set of bad λ is included in the set of roots of a finite number of polynomials. Bounding their degrees concludes.

Representation of divisors

- Choose polynomial *h* as denominator : build + solve linear system.
- Compute the representation of (h) E : resultant and subresultant.
- Identify the unwanted zeros of h : GCD.
- Find the new constraints on the zeroes of numerators : CRT.
- Compute a base of numerators : build + solve linear system.

All complexity bounds count the number of arithmetic operations in \mathbf{K} .

- Build + find a solution to the first linear system : $O((\deg(D_+) + r)^{\omega})$.
- Resultant and subresultant : $\widetilde{O}(\max(\deg(C)^3, (\deg(D_+) + r)^2/\deg(C))).$
- GCD's and CRT : both in $O(\max(\deg(\mathcal{C})^{2\omega}, \deg(D_+)^{\omega})).$
- Build + solve the second linear system : $O(\max(\deg(C)^{2\omega}, \deg(D_+)^{\omega}))$.

Linear algebra rules Both in theory and practice.

Final complexity and comparisons

Final complexity

Our algorithm requires at most

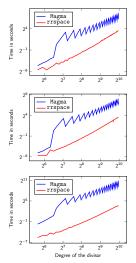
```
O(\max(\deg(C)^{2\omega},\deg(D_+)^{\omega}))
```

arithmetic operations in \mathbf{K} .

- Improves the complexity in $O(\deg(C)^6 \deg(D_+)^6)$ of the geometric algorithm of Huang and lerardi.
- When $\deg(D_+) \leq \deg(C)^2$, complexity in $O(\deg(C)^{2\omega})$. Slightly improves Khuri-Makdisi in the special case of computing in Jacobians of smooth plane curves.
- Produces a Las Vegas algorithm at the cost of a small increase in complexity.

Experimental results

Comparison of the C++/NTL implementation rrspace and the Magma implementation RiemannRochSpace. Logarithmic scales.



Computation of a basis of L(D) on a smooth curve of degree 10 on GF(65521).

Computation of a basis of L(D) on a nodal curve of degree 10 on *GF*(65521).

Computation of a basis of L(D) on a smooth curve of degree 10 on $GF(2^{32}-5)$.

- Structure of the linear systems?
- What happens when the interpolating denominator encounters an unwanted singularity ?

Code available : https ://gitlab.inria.fr/pspaenle/rrspace ArXiv link : https ://arxiv.org/abs/1811.08237

- Structure of the linear systems?
- What happens when the interpolating denominator encounters an unwanted singularity ?

Code available : https ://gitlab.inria.fr/pspaenle/rrspace ArXiv link : https ://arxiv.org/abs/1811.08237

Thank you!