
A Geometric Approach for the Computation of
Riemann-Roch Spaces : Algorithm and Complexity

Aude Le Gluher and Pierre-Jean Spaenlehauer
Université de Lorraine / INRIA Nancy – Grand Est / CNRS

CARAMBA team

SPECFUN team, 2019

1 / 28

Setup : the Riemman-Roch Problem

K : sufficiently large perfect field.
C : irreducible projective nodal curve with r nodes, described by Q ∈ K[X ,Y].

Goal : find all functions
R(X ,Y)/S(X ,Y) ∈ K(C) =
Frac(K[X ,Y]/(Q)) such that :
R(Z) = 0
S may cancel at P1

S may cancel at P2

no poles at infinity

Prescribed zeroes, authorized poles

2 / 28

Setup : the Riemman-Roch Problem

K : sufficiently large perfect field.
C : irreducible projective nodal curve with r nodes, described by Q ∈ K[X ,Y].

Goal : find all functions
R(X ,Y)/S(X ,Y) ∈ K(C) =
Frac(K[X ,Y]/(Q)) such that :
R(Z) = 0
S may cancel at P1

S may cancel at P2

no poles at infinity

Prescribed zeroes, authorized poles

2 / 28

Setup : the Riemman-Roch Problem

K : sufficiently large perfect field.
C : irreducible projective nodal curve with r nodes, described by Q ∈ K[X ,Y].

Goal : find all functions
R(X ,Y)/S(X ,Y) ∈ K(C) =
Frac(K[X ,Y]/(Q)) such that :
R(Z) = 0
S may cancel at P1

S may cancel at P2

no poles at infinity

Prescribed zeroes, authorized poles

2 / 28

Motivations

Riemann-Roch spaces are vector spaces useful in particular for :

Computing the group law of the Jacobian of a curve.
Volcheck (1994), Huang et Ierardi (1994), Khuri-Makdisi (1995).
Building algebraic geometric error-correcting codes.
Goppa (1983), Haché (1995).
Integration of algebraic functions. Davenport (1981).

3 / 28

State of the art

Here, C is a curve of degree d and genus g and D = D+ − D− is a divisor on C .

Computation of general Riemann-Roch spaces :

Huang and Ierardi (1994) : geometric algorithm in O(d6 deg(D+)
6).

Haché (1995).
Hess’s arithmetic algorithm (2002).

Computation of the group law in Jacobians (deg(D+) = O(g)) :

Volcheck (1994) : arithmetic algorithm in O(max(d , g)7).
Khuri-Makdisi (2007) : algorithm in O(gω+ε) where ω is a feasible exponent
for matrix multiplication and ε > 0.
Possible improvements for specific curves (for instance Õ(g) for hyperelliptic
curves, Cantor).

4 / 28

Main results

Variant of the Brill-Noether algorithm : geometric probabilistic algorithm for
computing Riemann-Roch spaces in the case of divisors not involving singular
points. Mild assumption when the curve is singular.
Bound on the probability of failure :

O(max(deg(C)4, deg(D+)
2)/|E |)

where E is a finite subset of K in which we can pick elements at random
uniformly.
Proof of complexity :
Number of arithmetic operations in K bounded by :

O(max(deg(C)2ω, deg(D+)
ω)

where ω is a feasible exponent for matrix multiplication.
C++/NTL implementation of this algorithm.

5 / 28

Plan

1 Algorithm
Input and requirements
The Brill-Noether algorithm

2 Representation of divisors

3 Complexity

6 / 28

Divisors and the Riemann-Roch problem

A divisor D on C is a formal sum with integer coefficients of closed points.
The divisor associated to a function g ∈ K(C) is the divisor for which the
coefficient of P ∈ C is the valuation of g in P.
The nodal divisor E is the divisor of degree 2r which is the sum of the points
that project to a node.
The Riemann-Roch space associated to the divisor D is

L(D) = {f ∈ K(C) \ {0}|(f) ≥ −D} ∪ {0}

Keep in mind

When writing D = D+ − D−, the divisor D+ constrains the poles of f ∈ L(D) and
D− constrains its zeroes.

7 / 28

Input and output

Input :
A polynomial q ∈ K[X ,Y] describing an irreducible projective plane curve C .
The representation of the nodal divisor E .
The representations of two effective smooth divisors D+ and D−.

Output : A basis of the vector space L(D) where D = D+ − D−.

8 / 28

(Mild) assumptions on the input

The polynomial q is monic in Y .
The degree in Y of q equals its total degree.

Mild assumptions because...

This can be enforced by a linear change of coordinates.

No singular point in the input divisor D = D+ − D−.
There exists a form h of a chosen degree d such that (h) ≥ D+ + E and
(h)− E does not involve any singular point.

Goal of these assumptions

We want singularities to have a minimal impact on computations.

9 / 28

Construction of a suitable denominator

Common denominator of degree d .

−→ Choose a random polynomial h of degree d which vanishes with the right
multiplicities at all points prescribed by D+ + E : h is solution of an
underdetermined linear system.

−→ Computation of a representation for the effective divisor (h)− E .

About the degree of h

The degree d is tuned to be as small as possible while guaranteeing an
underdetermined linear system. We have :

d <
deg(D+) + r

deg(C)
+ deg(C)

Why bother with E ?

We need h to vanish at singularities to use Brill-Noether residue theorem.

10 / 28

Readjusting the zeroes

Non exact interpolation : h has non
desired smooth zeroes.

−→ Find those non desired zeroes :
they are represented by [(h)−E]−D+.
−→ Add them to D−.

Counterbalance the unwanted zeros of
the denominator by the same zeros for
the numerators.

Importance of our singular assumption

We assume (h)− E does not involve any singular point of C .

11 / 28

Construction of the numerators

From last step : D ′ = D− + [(h)− E]− D+ + E imposes the zeros of numerators.

−→ Computation of a base B of polynomials of degree at most deg(h) and
vanishing at all points prescribed by D ′ with the right multiplicities : again a linear
system.

Correction of the algorithm

The set {b/h | b ∈ B} is a base of the Riemann-Roch space L(D).

Proof : Vect({b/h | b ∈ B}) ⊂ L(D) by construction. The converse uses the
Brill-Noether residue theorem.

12 / 28

Sum up of the algorithm

Choose an interpolating polynomial h as denominator.
Compute the representation of the smooth part of (h).
Identify the unwanted zeros of h.
Find the new constraints on the zeroes of numerators.
Compute a base of numerators.

13 / 28

Plan

1 Algorithm

2 Representation of divisors
Polynomial representation
Operations on divisors

3 Complexity

14 / 28

Main idea

What do we represent ?

We represent effective divisors D with no singular points.

The representation of D is :

Similar to Mumford Coordinates in the case of hyperelliptic curves,
Encodes the effective divisor by univariate polynomials (Giusti, Lecerf, Salvy,
1999). In particular :
Finds a univariate polynomial χ such that K[C]/(I) ∼= K[S]/χ(S) where I is
an ideal such that K[C]/(I) is the description of the algebraic set
corresponding to the support of D.

15 / 28

Primitive representation of effective divisors

An effective divisor D is represented by (λ, χ, u, v) ∈ K×K[S]3 such that :
1 The degree of χ is the degree of D and deg(u), deg(v) < deg(D).
2 q(u(S), v(S)) ≡ 0 mod χ(S).
3 λu(S) + v(S) = S .

4 GCD

(
∂q

∂X
(u(S), v(S))− λ ∂q

∂Y
(u(S), v(S)), χ(S)

)
= 1.

16 / 28

Illustration of the representation

Potential problems :

Points of the divisor with the
same projection.
Tangents to the curve
perpendicular to the
direction of projection at
some divisor points.

Solution : Find a suitable direction
of projection.

17 / 28

Existence of the representation

Warning

Such a representation does not always exist !
BUT

It does exist if the field K is large enough.

Idea of the proof :

The λ ∈ K such that λX + Y is not a primitive element of K[C]/(m) where
m is a maximal ideal representing a point P of C are finite.
Build representations for each point P involved in the divisor by finding
primitive elements of the form λX + Y for K[C]/(m).
Lift those representations thanks to Hensel’s lemma to encode multiplicities.
Use the CRT to find the final representation.

18 / 28

Operations needed on smooth representations

Our algorithm requires us to know how to :

Sum two representations.
Subtract two representations (knowing that the result will remain an effective
divisor).
Compute the representation of the divisor (h)− E .

Remark
The first two operations require the two input representations to agree on a
common λ. Need to change the primitive element (Giusti, Lecerf, Salvy, 1999).

19 / 28

Agreeing on a primitive element in practice

In practice, if K is large enough, a random choice of λ should work :

−→ By default, choose λ = 0.
−→ If an error occurs at some point (bad λ), choose another λ and restart the
computations from the top instead of changing the primitive element as we go.

20 / 28

Example : the subtraction

Input : Two representations (λ, χ1, u1, v1) and (λ, χ2, u2, v2) of effective smooth
divisors D1 and D2.

Output : The representation of D1 − D2 if this divisor remains effective.

Algorithm :
Suppress the common factors of χ1 and χ2 by computing
χ = χ1/GCD(χ1, χ2)

Reduce u1 and v1 modulo χ.
Return (λ, χ, u, v).

Main idea

With this representation, operations on divisors are operations on
univariate polynomials.

21 / 28

When does the algorithm fails ?

Failure = bad choice for the λ used to represent divisors.

Bound on the probability of failure

Assuming we can choose elements of K uniformly at random in a finite subset
E ⊂ K, the probability that our algorithm fails is bounded above by

O(max(deg(C)4, deg(D+)
2)/|E |)

Idea of the proof : The set of bad λ is included in the set of roots of a finite
number of polynomials. Bounding their degrees concludes.

22 / 28

Plan

1 Algorithm

2 Representation of divisors

3 Complexity

23 / 28

Translation of the operations needed

Choose polynomial h as denominator : build + solve linear system.
Compute the representation of (h)− E : resultant and subresultant.
Identify the unwanted zeros of h : GCD.
Find the new constraints on the zeroes of numerators : CRT.
Compute a base of numerators : build + solve linear system.

24 / 28

Costs of each operation

All complexity bounds count the number of arithmetic operations in K.

Build + find a solution to the first linear system : O((deg(D+) + r)ω).

Resultant and subresultant : Õ(max(deg(C)3, (deg(D+) + r)2/deg(C))).
GCD’s and CRT : both in O(max(deg(C)2ω, deg(D+)

ω)).
Build + solve the second linear system : O(max(deg(C)2ω, deg(D+)

ω)).

Linear algebra rules

Both in theory and practice.

25 / 28

Final complexity and comparisons

Final complexity

Our algorithm requires at most

O(max(deg(C)2ω, deg(D+)
ω)

arithmetic operations in K.

Improves the complexity in O(deg(C)6 deg(D+)
6) of the geometric algorithm

of Huang and Ierardi.
When deg(D+) ≤ deg(C)2, complexity in O(deg(C)2ω). Slightly improves
Khuri-Makdisi in the special case of computing in Jacobians of smooth plane
curves.
Produces a Las Vegas algorithm at the cost of a small increase in complexity.

26 / 28

Experimental results

Comparison of the C++/NTL implementation rrspace and the Magma
implementation RiemannRochSpace. Logarithmic scales.

26 27 28 29 210

2−6

2−1

24

T
im

e
in

se
co
nd

s

Magma
rrspace

Computation of a basis of L(D) on
a smooth curve of degree 10 on
GF (65521).

26 27 28 29 210

2−6

2−1

24

29

T
im

e
in

se
co
nd

s

Magma
rrspace

Computation of a basis of L(D)
on a nodal curve of degree 10 on
GF (65521).

26 27 28 29 210
2−7

2−1

25

211

Degree of the divisor

T
im

e
in

se
co
nd

s

Magma
rrspace

Computation of a basis of L(D) on
a smooth curve of degree 10 on
GF (232 − 5).

27 / 28

Future works

Structure of the linear systems ?
What happens when the interpolating denominator encounters an unwanted
singularity ?

Code available : https ://gitlab.inria.fr/pspaenle/rrspace
ArXiv link : https ://arxiv.org/abs/1811.08237

Thank you !

28 / 28

Future works

Structure of the linear systems ?
What happens when the interpolating denominator encounters an unwanted
singularity ?

Code available : https ://gitlab.inria.fr/pspaenle/rrspace
ArXiv link : https ://arxiv.org/abs/1811.08237

Thank you !

28 / 28

	Algorithm
	Input and requirements
	The Brill-Noether algorithm

	Representation of divisors
	Polynomial representation
	Operations on divisors

	Complexity

