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Moment Problems and Applications

Moments of a mesure

mα = ∫
Rn

xαdµ

= ∫
G

xαf (x)dx

for α ∈ Nna

○ G n-dim semi-algebraic set, with g ∈ K[x] vanishing on ∂G
○ f ∶ Rn → R D-finite = satisfies a “complete” system of PDEs

aα = (α1, . . . ,αn), xα
= xα1

1 . . . xαn
n , ∣α∣ = α1 + ⋅ ⋅ ⋅ +αn , K[x]d = polynomials of total degree at most d

→ Direct problem: knowing G and f , find a complete system of recurrences for (mα)

↝ Finite determinancy of such measures
↝ Solved with Creative Telescoping, e.g., [Oaku2013] + Takayama’s algorithm

→ Inverse problem: reconstruct G and/or f , given finitely many moments mα

statistics signal processing medical imaging (MRI) gravimetry combinatorics
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Inverse Problems

Measures

(mα)∣α∣⩽N

Reconstruction
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Data Recovery From Moments — Exisiting Techniques

→ Numerical methods, e.g.:

○ Convex polytopes: [GolubMilanfarVarah1999] [GravinLasserrePasechnikRobins2012]

○ Planar quadrature domains: [EbenfeltGustafssonKhavinsonPutinar2005]

○ Sublevel sets of homogeneous polynomials: [Lasserre2013]

→ Symbolic/algebraic methods:

○ A historical starting point: Prony’s method
− reconstructing sparse exponential functions (∑α∈I λαeαx ) from evaluations
− link with moments of Dirac measures

○ Multivariate extensions of Prony’s method, e.g., [Mourrain2018]

○ Reconstructing univariate piecewise D-finite densities: [Batenkov2009]
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Exact Support and/or Density Reconstruction

Lasserre and Putinar’s exact reconstruction algorithm (2015)

Inverse Problem: Exponential-Polynomial Measure, Algebraic Support
Let G ⊂ Rn, bounded open set, whose algebraic boundary is included in the zero set of
a polynomial g ∈ K[x]d , and f (x) = exp(p(x)) with p ∈ K[x]s . Given p, degree d and
moments mα up to order ∣α∣ = 3d + s, the coefficients of g can be exactly recovered.

Key idea: Linear recurrences satisfied by the moments + Stokes’ Theorem

Our contribution: a computer algebra approach
○ generalization in the framework of holonomic distributions

⇒ they satisfy (as a generalized function) a “complete” system of linear PDEs/ODEs with
polynomial coefficients

○ exact recovery of both support and Exponential-Polynomial density f = exp(p),
with explicit bound on the required number of moments

○ similar algorithm for D-finite density, but no a priori bound on the required
number of moments
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Ore Algebras, Differential Equations and Recurrences

1. Differential Ore Algebras

− Differential operators: non-commutative, spanned by x1, ∂x1 , . . . , xn, ∂xn

∂xi f = f ′xi (xi f )′xi = xi f ′xi + f ⇒ ∂xi xi = xi∂xi + 1

− K[x]⟨∂x ⟩ polynomial Ore algebra vs K(x)⟨∂x ⟩ rational Ore algebra

− Ann(f ) = {L ∈ K(x)⟨∂x ⟩ ∣ L f = 0} PDEs satisfied by density f

⇒ f is D-finite iff K(x)⟨∂x ⟩/Ann(f ) has finite dimension over the ∂xi

Example: Exponential-Polynomial Density

f (x) = c exp(p(x)) with p ∈ Ks[x] (e.g., Gaussian distribution)

f ′xi − p′xi f = 0 ⇒ Ann(f ) generated by the ∂xi − p′xi ⇒ f is D-finite
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Ore Algebras, Differential Equations and Recurrences

2. Difference Ore Algebras

− Difference operators: non-commutative, spanned by α1, Sα1 , . . . , αn, Sαn

(αi u)α = αi uα (Sαi u)α = uα1,...,αi+1,...,αn Sαiαi = (αi + 1)Sαi

− Ann(u) = {R ∈ K[α]⟨Sα⟩ ∣ R u = 0} recurrences satisfied by u

Goals

Recurrences for the moments mα = ∫
G

xαf (x)dx :

○ Direct problem: I ⊆ Ann(f ) ?
Ð→ J ⊆ Ann(mα)

○ Inverse problem: Reconstruct G and I ⊆ Ann(f ) from sufficiently many mα
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Holonomic Measures

− Measure µ = f 1G as a linear functional:

⟨f 1G , ϕ⟩ = ∫
Rn
ϕ(x)f (x)1G(x)dx = ∫

G
ϕ(x)f (x)dx

− Action of Ore polynomials: Lµ = ?

Example: Lebesgue measure over a segment

Let G = [−1,1], f = 1, and µ = 1G

-1.5 -1.0 -0.5 0.5 1.0 1.5
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○ Ore polynomials acting on distributions: ⟨L T , ϕ⟩ = ⟨T ,L∗ ϕ⟩

x∗i = xi ∂∗xi = −∂xi (L1L2)
∗ = L∗2L∗1

○ Ann(T) in K[x]⟨∂x ⟩ ⇒ holonomic instead of D-finite
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From Holonomic Measures to Recurrences on Moments

− Again, with G = [−1,1], and using ϕ = xk :

0 = ⟨(1 − x2)∂x1G , xk⟩

= ⟨1G , ∂x(x2 − 1)xk⟩ = ∫
1

−1
((k + 2)xk+1 − kxk−1)dx

⇒ Recurrence satisfied by the moments (mk):

(k + 2)mk+1 − kmk−1 = 0

This is indeed true...

mk = ∫
1

−1
xkdx =

⎧⎪⎪
⎨
⎪⎪⎩

2
k+1 if k even
0 if k odd
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Using Integration by Parts

− µ = f 1G with G = [−1,1] and f (x) = exp(−x2):

⟨µ,ϕ⟩ = ∫
1

−1
ϕf dx

⇒ (1 − x2)(∂x − 2x) ∈ Ann(µ)
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− replace ϕ = xk to obtain a recurrence

∫
1

−1
(∂x + 2x)(x2 − 1)xk f (x)dx = 0

⇒ Recurrence for the mk :

2mk+3 + kmk+1 − kmk−1 = 0
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The General Case

µ = f 1G , L ∈ K[x]⟨∂x ⟩ of order r ,

− Use Lagrange identity:

ϕ (L f ) − (L∗ ϕ) f = ∂x LL(f , ϕ)

→ LL bilinear concomitant in f , ϕ with derivatives of order ⩽ r − 1

−

= 0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∫
G
ϕ (L f )dx −

⟨Lµ,ϕ⟩
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∫
G
(L∗ ϕ) f dx = ∫

G
∇ ⋅LL(f , ϕ)dx

=

= 0
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

∫
∂G
LL(f , ϕ) ⋅ n⃗ dS

→ if L ∈ Ann(f ) → where g = 0 on ∂G

→ use Stokes’ theorem

⇒ L = g r L ∈ Ann(µ)
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From Differential Equations to Recurrences

− Translate L = g r L ∈ Ann(µ) into a recurrence on (mα):

xi → Sαi ∂xi → −αi S−1αi

Direct Problem Inverse Problem

1. {L1, . . . ,Lk} ⊆ Ann(f ) D-finite

2. {L1, . . . ,Lk} ⊆ Ann(µ)

3. Translate into {R1, . . . ,Rk} ⊆ Ann(mα)

4. Gröbner basis algo on {R1, . . . ,Rk}

Theorem

If f (x) = exp(p(x)) and g = 0 on ∂G s.t.
{x ∈ Cn ∣ g(x) = 0 and ∇g(x) = 0} = ∅,
then the recurrences system is holonomic.

⇒ Conjecture for the general case?

○ Reconstruct Li , then g and Li from the
given moments mα

⇒ Translation Li ↔ Ri is linear

⇒ Holonomicity not needed
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Inverse Problem — Roadmap and Issues

− To reconstruct g vanishing on ∂G and L ∈ Ann(f ) of order r :

1. Make an ansatz L̃ for L = g r L ∈ Ann(µ)

2. Find the coefficients of L̃ by solving the linear system:

⟨L̃µ, xα⟩ = ⟨µ, L̃∗xα⟩ = ∫
G
(L̃∗xα)f (x)dx = 0, ∣α∣ ⩽ N (LSN)

requiring moments mα for ∣α∣ ⩽ N + . . .
3. Extract g and L from L̃ using (numerical) GCDs

− Issues to be handled:

○ False solutions in (LSN): L̃ ∉ Ann(µ)?

○ How many moments mα: a priori bounds on N?

○ Can g and L be always extracted from L̃ ∈ Ann(µ)?
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Reconstruction of Exp-Poly Densities

− µ = f 1G with f (x) = exp(p(x)) for p ∈ K[x]s and g ∈ K[x]d vanishing on ∂G

Li = g(∂xi − p′xi ) ∈ Ann(µ)

Algorithm ReconstructExpPoly

Input: Moments mα of µ for ∣α∣ ⩽ N + d + s − 1
Output: Polynomials g̃ and p̃

1. Build ansatz L̃i = g̃∂xi − h̃i for 1 ⩽ i ⩽ n
2. Compute coefficients of g̃ , h̃i with nontrivial solution of

⟨µ, L̃∗i xα⟩ = 0, 1 ⩽ i ⩽ n, ∣α∣ ⩽ N (LSN)

3. p̃ ←
n
∑
i=1

xi

∫
0

p̃i(0, . . . , ti , xi+1, . . . , xn)dti where p̃i = h̃i/g̃

Theorem — Correctness of ReconstructExpPoly
If N ⩾ 3d + s − 1, then ReconstructExpPoly computes:
○ g̃ = λg with λ ≠ 0
○ p̃ = p − p(0)
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Theorem — Correctness of ReconstructExpPoly
If N ⩾ 3d + s − 1, then ReconstructExpPoly computes:
○ g̃ = λg with λ ≠ 0
○ p̃ = p − p(0)
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Reconstruction of Exp-Poly Densities — Proof

Theorem — Correctness of ReconstructExpPoly
If N ⩾ ???, then ReconstructExpPoly computes:
○ g̃ = λg with λ ≠ 0 ○ p̃ = p − p(0)

Proof.

1. Reconstruction of p

for all ϕ ∈ K[x]N :

0 = ⟨L̃µ,ϕ⟩

= ∫
G
ϕ (g̃∂xi − h̃i)f dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(∗)

+ ∫
∂G

g̃ϕf e⃗i ⋅ n⃗ dS
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

= 0

→ Take ϕ = (g̃p′xi − h̃i)g2 of degree 3d + s − 1
→ Hence (∗) = 0 ⇒ g2(g̃p′xi − h̃i)

2f = 0 on G ⇒ p′xi = h̃i/g̃

2. Reconstruction of g

for all ϕ ∈ K[x]N :

∫
∂G

g̃ϕf e⃗i ⋅ n⃗
±

= g′xi
/∥∇g∥

dS = 0

→ Take ϕ = g̃g ′xi of degree 2d − 1

⇒ g̃2g ′xi
2 f
∥∇g∥ = 0 on ∂G ⇒ g̃ = 0 on ∂G
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Example — Algebraic Support, Gaussian Measure

→ Reconstruction of:

f (x , y) = exp(−x2 + xy − y2/2) and g(x , y) = (x2 − 9/10)2 + (y2 − 11/10)2 − 1

- 2 - 1 0 1 2

- 2

- 1

0

1

2

x

y

Moments (mij)i+j⩽18 with 10 digits of accuracy
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Density and Support Reconstruction in the General Case

− µ = f 1G with g ∈ K[x]d vanishing on ∂G, and {L1, . . . ,Ln} rectangular system for f :
Li = qiri ∂

ri
xi + ⋅ ⋅ ⋅ + qi1∂xi + qi0 ∈ Ann(f ) ∩K[x]⟨∂xi ⟩

hij = g ri qij ∈ K[x]s

Algorithm ReconstructDensity

Input: Moments mα of µ for ∣α∣ ⩽ N + s
Output: A rectangular system {L̃1, . . . , L̃n} for f

1. Build ansatz L̃i = h̃iri ∂
ri
xi + ⋅ ⋅ ⋅ + h̃i0 for 1 ⩽ i ⩽ n

2. Compute coefficients of h̃ij with nontrivial solution of

⟨µ, L̃∗i xα⟩ = 0, 1 ⩽ i ⩽ n, ∣α∣ ⩽ N
3. Extract (numerical) GCD polynomial factor in L̃i

Algorithm ReconstructSupport

Input: Rectangular {L1, . . . ,Ln} and mα for ∣α∣ ⩽ N + dr +maxij{deg(qij) − j}
Output: Polynomial g̃ ∈ K[x]d

1. Compute coefficients of ansatz h̃ ∈ K[x]dr with nontrivial solution of

⟨µ, (h̃Li)
∗xα⟩ = 0, 1 ⩽ i ⩽ n, ∣α∣ ⩽ N

2. g̃ ← (numerical) GCD of {h̃, h̃′x1 , . . . , h̃
′

xn}
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Density and Support Reconstruction in the General Case

Theorem — Correctness of ReconstructDensity

For N large enough, the rectangular system {L̃1, . . . , L̃n} computed by
ReconstructDensity is in Ann(f ).

Theorem — Correctness of ReconstructSupport
ReconstructSupport computes g̃ = λg with λ ≠ 0 whenever qir ≠ 0 on ∂G and
N ⩾ (2r − 1)d + (d − 1)b + s where:
○ r = max

1⩽i⩽n
ri , orders of the Li

○ b = r mod 2
○ s = max

1⩽i⩽n
{deg(qir )} maximal degree of the head coefficients

On Moment Problems with Holonomic Functions — F. Bréhard, M. Joldes and J.-B. Lasserre 17/24



Density and Support Reconstruction in the General Case

Theorem — Correctness of ReconstructDensity

For N large enough, the rectangular system {L̃1, . . . , L̃n} computed by
ReconstructDensity is in Ann(f ).

Theorem — Correctness of ReconstructSupport
ReconstructSupport computes g̃ = λg with λ ≠ 0 whenever qir ≠ 0 on ∂G and
N ⩾ (2r − 1)d + (d − 1)b + s where:
○ r = max

1⩽i⩽n
ri , orders of the Li

○ b = r mod 2
○ s = max

1⩽i⩽n
{deg(qir )} maximal degree of the head coefficients

On Moment Problems with Holonomic Functions — F. Bréhard, M. Joldes and J.-B. Lasserre 17/24



Support Reconstruction — Proof

Theorem — Correctness of ReconstructSupport
ReconstructSupport computes g̃ = λg with λ ≠ 0 whenever:

○ N ⩾ (2r − 1)d + (d − 1)b + s

○ qir ≠ 0 on ∂G

Proof.

− 0 = ⟨h̃Liµ,ϕ⟩

= ∫
G
ϕh̃(Li f )dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 0

− ∫
∂G
LLi (f , h̃ϕ)e⃗i ⋅ n⃗ dS

for ϕ ∈ K[x]N

− Suppose for contradiction that h̃ = gkh0 with g ∤ h0 and k < r

LLi (f , h̃ϕ) = f [qi1h̃ϕ − ∂xi (qi2h̃ϕ) + ⋅ ⋅ ⋅ + (−1)r−1∂r−1
xi (qir h̃ϕ)]

+∂xi (f ) [qi2h̃ϕ − ∂xi (qi3h̃ϕ) + ⋅ ⋅ ⋅ + (−1)r−2∂r−2
xi (qir h̃ϕ)]

+ . . .

+∂r−1
xi (f ) qir h̃ϕ.

→ Take ϕ = qir h0g r−1−kg ′xi
b of deg ⩽ (2r − 1)d + (d − 1)

r mod 2
©
b + s, so that g r−1 ∣ h̃ϕ

→ 0 = ∫
∂G
∂r−1

xi (qir h̃ϕ)
g ′xi

∥∇g∥
f dS

= (r − 1)!∫
∂G

(g ′xi

r+b
2 qir h0)

2 f
∥∇g∥

dS

⇒ Contradiction: h0 = 0 on ∂G , hence g ∣ h0
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○ N ⩾ (2r − 1)d + (d − 1)b + s

○ qir ≠ 0 on ∂G

Proof.
− 0 = ⟨h̃Liµ,ϕ⟩ = ∫

G
ϕh̃(Li f )dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
= 0

− ∫
∂G
LLi (f , h̃ϕ)e⃗i ⋅ n⃗ dS for ϕ ∈ K[x]N

− Suppose for contradiction that h̃ = gkh0 with g ∤ h0 and k < r

LLi (f , h̃ϕ) = f [qi1h̃ϕ − ∂xi (qi2h̃ϕ) + ⋅ ⋅ ⋅ + (−1)r−1∂r−1
xi (qir h̃ϕ)]

+∂xi (f ) [qi2h̃ϕ − ∂xi (qi3h̃ϕ) + ⋅ ⋅ ⋅ + (−1)r−2∂r−2
xi (qir h̃ϕ)]

+ . . .

+∂r−1
xi (f ) qir h̃ϕ.

→ Take ϕ = qir h0g r−1−kg ′xi
b of deg ⩽ (2r − 1)d + (d − 1)

r mod 2
©
b + s, so that g r−1 ∣ h̃ϕ

→ 0 = ∫
∂G
∂r−1

xi (qir h̃ϕ)
g ′xi

∥∇g∥
f dS

= (r − 1)!∫
∂G

(g ′xi

r+b
2 qir h0)

2 f
∥∇g∥

dS

⇒ Contradiction: h0 = 0 on ∂G , hence g ∣ h0
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The Singular Case — Example in Combinatorics

→ Express Catalan numbers as moments of a measure µ:

Cn =
1

n + 1
(
2n
n )

?
= ∫

I
xnf (x)dx

(n + 2)Cn+1 − (4n + 2)Cn = 0

− Reverse translation x ← Sn and ∂x ← −S−1n (n + 1) :

(n + 2)Sn − (4n + 2)

⇒ (4x − x2)∂x + 2 ∈ Ann(µ)

g = 1 ?

Cn = λ∫
+∞

−∞

xn
√

4 − x
x

dx ?
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Some Limits and Perspectives

A priori bounds for N in the general case with unknown D-finite density?

Full determination of the density, including initial conditions

Extracting the component of V (g) corresponding to ∂G
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Bounds for the Number of Moments?

− Is there an explicit bound N0 on N s.t. for ansatz L̃ of L = g r L:

⟨L̃µ,ϕ⟩ = 0 for all ϕ ∈ K[x]N ⇒ L̃µ = 0 when N ⩾ N0 ?

− The proof of the Exp-Poly density case doesn’t generalize:

⟨L̃µ,ϕ⟩ = ∫
G
ϕ (L̃ f )dx

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
???

− ∫
∂G
LL̃(f , ϕ) ⋅ n⃗ dS

− Such a bound N0 depending only on the structure of L̃ cannot exist:

Example [Batenkov2009] — Legendre Polynomials Pn over [−1,1]

Pn(x) annihilated by Ln = ∂x ((1 − x2)∂x) + n(n + 1) ⇒ common ansatz L̃

but m(n)
k = ∫

1
−1 xkPn(x)dx = 0 for k < n and m(n)

n > 0

→ Explicit bounds depending on upper bounds on the coefficients of L̃?
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Reconstructing Initial Conditions of the Density

− Algorithm ReconstructDensity only computes a system Ĩ = {L̃1, . . . , L̃n}
but not the initial conditions that fully characterize f

→ Solution: compute initial moments for a basis of solution densities of Ĩ

○ Optimization techniques, e.g., [HenrionLasserreSavorgnan2009]

○ Computer algebra, e.g., [LairezMezzarobbaElDin2019]
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○ Optimization techniques, e.g., [HenrionLasserreSavorgnan2009]
○ Computer algebra, e.g., [LairezMezzarobbaElDin2019]
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Reconstructing Initial Conditions of the Density

− Algorithm ReconstructDensity only computes a system Ĩ = {L̃1, . . . , L̃n}
but not the initial conditions that fully characterize f

→ Solution: compute initial moments for a basis of solution densities of Ĩ

○ Optimization techniques, e.g., [HenrionLasserreSavorgnan2009]

○ Computer algebra, e.g., [LairezMezzarobbaElDin2019]
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Isolation of the Topological Boundary
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I(∂G) = (g) with g(x , y) = (x2+y2−9)(x2+y2−1)((x−2)2+y2−1)(x2+(y−2)2−1)
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Isolation of the Topological Boundary
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Isolation of the Topological Boundary
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I(∂G) = (g) with g(x , y) = (x2+y2−9)(x2+y2−1)((x−2)2+y2−1)(x2+(y−2)2−1)

g̃ reconstructed using 6 digits accuracy for the moments (mα)
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Isolation of the Topological Boundary
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I(∂G) = (g) with g(x , y) = (x2+y2−9)(x2+y2−1)((x−2)2+y2−1)(x2+(y−2)2−1)

g̃ reconstructed using 4 digits accuracy for the moments (mα)
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Isolation of the Topological Boundary
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I(∂G) = (g) with g(x , y) = (x2+y2−9)(x2+y2−1)((x−2)2+y2−1)(x2+(y−2)2−1)

g̃ reconstructed using 2 digits accuracy for the moments (mα)
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Isolation of the Topological Boundary
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I(∂G) = (g) with g(x , y) = (x2+y2−9)(x2+y2−1)((x−2)2+y2−1)(x2+(y−2)2−1)

g̃ reconstructed using 1 digit accuracy for the moments (mα)

On Moment Problems with Holonomic Functions — F. Bréhard, M. Joldes and J.-B. Lasserre 23/24



Isolation of the Topological Boundary
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g̃ reconstructed using 2 digits accuracy for the moments (mα)
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Isolation of the Topological Boundary

-4 -2 0 2 4

-4

-2

0

2

4

I(∂G) = (g) with g(x , y) = (x2+y2−9)(x2+y2−1)((x−2)2+y2−1)(x2+(y−2)2−1)

∂G ≈ {(x , y) ∣ g(x , y) = 0 and E [g̃(x , y)2] ⩽ ε} , g̃ ← randomly perturbed (m̃α)
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Conclusion and Perspectives

Contributions:

○ Extension of [LasserrePutinar2015] to reconstruction of unknown Exp-Poly
density and unknown semi-algebraic support

→ Explicit bound for the number N of required moments

○ Reconstruction algorithm for unknown holonomic density and unknown
semi-algebraic support

○ Numerical experiments using least-squares approximation when approximate
moments are known

Future work:

○ Generic bounds for N depending on the magnitude of the coefficients

○ Numerical aspects: robustness w.r.t. approximate moments, or nonpolynomial
boundary

○ Isolation of the topological boundary via perturbation techniques

○ Application to problems involving combinatorial sequences
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