Linking optimization with spectral analysis of 3-diagonal (univariate) moment matrices

Jean B. Lasserre*

LAAS-CNRS and Institute of Mathematics, Toulouse, France

SpecFun Seminar INRIA, Paris, January 2020

* Research funded by the European Research Council (ERC) under the European Union's Horizon 2020

research and innovation program (grant agreement 666981 TAMING)

Jean B. Lasserre* Optimization & 3-diagonal Hankel matrices

Based on arXiv:1907.09784

Let :

- $\Omega \subset \mathbb{R}^n$ be a compact set,
- $f: \Omega \to \mathbb{R}$ be a continuous function,

and consider the optimization problem :

$$\Omega := f_* = \min_{\mathbf{x}} \left\{ f(\mathbf{x}) : \mathbf{x} \in \Omega \right\}$$

Background : A converging hierarchy of upper bounds

Introduction

• Let $\Sigma[\mathbf{x}]_t$ be the convex cone of Sum-of-Squares polynomials (SOS) of degree at most 2t.

• Let λ be a Borel measure whose support is EXACTLY Ω , i.e., Ω is the smallest closed set such that $\lambda(\mathbb{R}^n \setminus \Omega) = 0$.

A converging hierarchy of UPPER BOUNDS

For every $t \in \mathbb{N}$, let

$$\rho_t := \min_{\sigma} \left\{ \int_{\Omega} f \, \sigma \, d\lambda : \int_{\Omega} \sigma \, d\lambda = 1; \quad \sigma \in \Sigma[\mathbf{x}]_t \right\}$$

 $\begin{array}{l} \textcircled{P}{P} & \rho_t \geq f_* \text{ because } \sigma \, d\lambda \text{ is a prob. measure on } \Omega, \text{ and so :} \\ & f \geq f^* \text{ on } \Omega \Rightarrow \int_{\Omega} f \, \sigma \, d\lambda \geq f_* \int_{\Omega} \sigma \, d\lambda = f_*. \end{array}$

Background : A converging hierarchy of upper bounds

Introduction

• Let $\Sigma[\mathbf{x}]_t$ be the convex cone of Sum-of-Squares polynomials (SOS) of degree at most 2t.

• Let λ be a Borel measure whose support is EXACTLY Ω , i.e., Ω is the smallest closed set such that $\lambda(\mathbb{R}^n \setminus \Omega) = 0$.

A converging hierarchy of UPPER BOUNDS

For every $t \in \mathbb{N}$, let

$$\rho_t := \min_{\sigma} \left\{ \int_{\Omega} f \, \sigma \, d\lambda : \int_{\Omega} \sigma \, d\lambda = 1; \quad \sigma \in \Sigma[\mathbf{x}]_t \right\}$$

 $\mathfrak{P}_{r} \rho_{t} \geq f_{*}$ because $\sigma d\lambda$ is a prob. measure on Ω , and so :

$$f \ge f^* \text{ on } \Omega \Rightarrow \int_{\Omega} f \sigma d\lambda \ge f_* \underbrace{\int_{\Omega} \sigma d\lambda}_{=1} = f_*.$$

Hence $\rho_{t+1} \geq \rho_t \geq f_*$ for all $t \in \mathbb{N}$.

The dual reads :

$$p_t^* := \max_{\theta} \{ \mathbf{M}_t(f \lambda) \succeq \theta \mathbf{M}_t(\lambda) \}$$

where

- M_t(λ) is the MOMENT matrix of order *t*, associated with the measure λ
- $\mathbf{M}_t(f \lambda)$) is the LOCALIZING matrix of order *t*, associated with the measure λ and the function *f*.

Computing ρ_t^* is solving a Generalized Eigenvalue Problem for the pair of matrices $(\mathbf{M}_t(\lambda), \mathbf{M}_t(f \lambda))$.

Hence $\rho_{t+1} \geq \rho_t \geq f_*$ for all $t \in \mathbb{N}$.

The dual reads :

$$p_t^* := \max_{\theta} \{ \mathbf{M}_t(f \lambda) \succeq \theta \mathbf{M}_t(\lambda) \}$$

where

- M_t(λ) is the MOMENT matrix of order *t*, associated with the measure λ
- $\mathbf{M}_t(f \lambda)$) is the LOCALIZING matrix of order *t*, associated with the measure λ and the function *f*.

Computing ρ_t^* is solving a Generalized Eigenvalue Problem for the pair of matrices $(\mathbf{M}_t(\lambda), \mathbf{M}_t(f \lambda))$.

Hence $\rho_{t+1} \geq \rho_t \geq f_*$ for all $t \in \mathbb{N}$.

The dual reads :

$$p_t^* := \max_{\theta} \{ \mathbf{M}_t(f \lambda) \succeq \theta \mathbf{M}_t(\lambda) \}$$

where

- M_t(λ) is the MOMENT matrix of order *t*, associated with the measure λ
- $\mathbf{M}_t(f \lambda)$) is the LOCALIZING matrix of order *t*, associated with the measure λ and the function *f*.

Computing ρ_t^* is solving a Generalized Eigenvalue Problem for the pair of matrices $(\mathbf{M}_t(\lambda), \mathbf{M}_t(f \lambda))$.

• The Moment matrix $\mathbf{M}_t(\lambda)$ associated with λ is real symmetric, with rows & columns indexed by $\alpha \in \mathbb{N}^t$, and with entries

$$\mathbf{M}_t(\lambda)(\alpha,\beta) = \int_{\Omega} \mathbf{x}^{\alpha+\beta} \, d\lambda, \quad \alpha,\beta \in \mathbb{N}_t^n$$

• The Localizing matrix $\mathbf{M}_t(\lambda)$ associated with λ and the function f is real symmetric, with rows & columns indexed by $\alpha \in \mathbb{N}^t$, and with entries

$$\mathbf{M}_t(f\,\lambda)(\alpha,\beta) = \int_{\Omega} f(\mathbf{x}) \, \mathbf{x}^{\alpha+\beta} \, d\lambda, \quad \alpha,\beta \in \mathbb{N}_t^n$$

If Ω is a "SIMPLE" set and f is a "POLYNOMI!AL" then ρ_t can be computed easily

• The Moment matrix $\mathbf{M}_t(\lambda)$ associated with λ is real symmetric, with rows & columns indexed by $\alpha \in \mathbb{N}^t$, and with entries

$$\mathbf{M}_t(\lambda)(\alpha,\beta) = \int_{\Omega} \mathbf{x}^{\alpha+\beta} \, d\lambda, \quad \alpha,\beta \in \mathbb{N}_t^n$$

• The Localizing matrix $\mathbf{M}_t(\lambda)$ associated with λ and the function f is real symmetric, with rows & columns indexed by $\alpha \in \mathbb{N}^t$, and with entries

$$\mathbf{M}_t(f\,\boldsymbol{\lambda})(\alpha,\beta) = \int_{\Omega} f(\mathbf{x}) \, \mathbf{x}^{\alpha+\beta} \, d\boldsymbol{\lambda}, \quad \alpha,\beta \in \mathbb{N}_t^n$$

^{IF} If Ω is a "SIMPLE" set and *f* is a "POLYNOMI!AL" then $ρ_t$ can be computed easily

Illustrative Example

Introduction

Let n = 2, $\mathbf{B} = [-1, 1]^2$, $f(\mathbf{x}) = x_1x_2 + x_2^2$, and λ be the Lebesgue measure on **B**. Then

$$\mathbf{M}_{t}(\lambda) = 4 \begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & \frac{1}{3} \end{bmatrix}; \mathbf{M}_{1}(f \lambda) = 4 \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{9} & \frac{1}{9} \\ 0 & \frac{1}{9} & \frac{1}{5} \end{bmatrix}$$

.

Hence

$$\rho_1^* = \max\left\{\theta : \begin{bmatrix} \frac{1}{3} & 0 & 0\\ 0 & \frac{1}{9} & \frac{1}{9}\\ 0 & \frac{1}{9} & \frac{1}{5} \end{bmatrix} \succeq \theta \begin{bmatrix} 1 & 0 & 0\\ 0 & \frac{1}{3} & 0\\ 0 & 0 & \frac{1}{3} \end{bmatrix}\right\}$$
$$f^* = 0 \le \rho_1^* \approx 0.22$$

- Typical examples of such "simple sets" Ω are :
- Box $[a,b]^n$ and Simplex $\{\mathbf{x} : \mathbf{e}^T \mathbf{x} \leq 1\},\$
- ellipsoid $\{\mathbf{x} : \mathbf{x}^T \mathbf{Q} \mathbf{x} \leq 1\}$ for $\mathbf{Q} \succ 0$, and sphere,
- Hypercube $\{-1,1\}^n$

- \mathbb{R}^n (with λ the Gaussian measure), positive orthant \mathbb{R}^n_+ (with λ the exponential measure)

as well as their affine transformations.

Theorem (Lass (2011))

Let Ω be compact with nonempty interior. Then $\rho_t^* = \rho_t \ge f_*$ for all t. In addition the sequence $(\rho_t)_{t\in\mathbb{N}}$ is monotone decreasing and converges to f_* , that is, $\rho_t \downarrow f_*$ as $t \to \infty$.

If $\mathbf{M}_t(\lambda)$ and $\mathbf{M}_t(f \lambda)$ are expressed in the basis of polynomials $(T_{\alpha})_{\alpha \in \mathbb{N}^n}$ orthonormal w.r.t. λ , then :

$$\rho_t = \lambda_{\min}(\mathbf{M}_t(\mathbf{f}\,\boldsymbol{\lambda})).$$

However one still has to compute the smallest eigenvalue of a real symmetric matrix of size $\binom{n+t}{n}$

Lass (2011) : A new look at nonnegativity on closed sets and polynomial optimization, SIAM J. Optim. 21, pp. 864–885.

Theorem (Lass (2011))

Let Ω be compact with nonempty interior. Then $\rho_t^* = \rho_t \ge f_*$ for all t. In addition the sequence $(\rho_t)_{t\in\mathbb{N}}$ is monotone decreasing and converges to f_* , that is, $\rho_t \downarrow f_*$ as $t \to \infty$.

If $\mathbf{M}_t(\lambda)$ and $\mathbf{M}_t(f \lambda)$ are expressed in the basis of polynomials $(T_{\alpha})_{\alpha \in \mathbb{N}^n}$ orthonormal w.r.t. λ , then :

$$\rho_t = \lambda_{\min}(\mathbf{M}_t(\mathbf{f}\,\boldsymbol{\lambda})).$$

However one still has to compute the smallest eigenvalue of a real symmetric matrix of size $\binom{n+t}{n}$

Lass (2011) : A new look at nonnegativity on closed sets and polynomial optimization, SIAM J. Optim. 21, pp. 864–885.

Jean B. Lasserre

As an illustrative example consider the bivariate Motzkin-like polynomial

$$\mathbf{x} \mapsto f(\mathbf{x}) := x_1^3 4x_2^2 + x_1^2 x_2^4 - 3x_1^2 x_2^2 + 1,$$

whig has 4 global minimizers. Below is the optimal SOS density σ^* of degree 24.

In a relatively recent series of papers E. De Klerk and M. Laurent (Netherlands) and collaborators have provided detailed analysis of the convergence $\rho_t \downarrow f_*$ as $t \to \infty$.

In a number of interesting cases where :

- Ω is a simple set (e.g., box, sphere), and
- λ is an appropriate well-known measure (Lebesgue, Chebyshev, rotation invariant, etc.)

they could prove $O(1/t^2)$ rates of convergence.

 De Klerk, Laurent, Sun (2017) Convergence analysis for Lasserre's measure-based hierarchy of upper bounds for polynomial optimization, Math. Program. 162, 1, p. 363-392
 de Klerk, Laurent (2018) Worst-case examples for Lasserre's measure-based hierarchy for polynomial optimization on the hypercube, Math. Oper. Res.

A new approach via a simple transformation

Introduction

Let the measure $\#\lambda$ on \mathbb{R} be the pushforward of λ by the mapping $f: \Omega \to \mathbb{R}$. That is :

 $#\lambda(B) = \lambda(f^{-1}(B)), \quad \forall B \in \mathcal{B}(\mathbb{R}).$

A new approach via a simple transformation

Introduction

Let the measure $\#\lambda$ on \mathbb{R} be the pushforward of λ by the mapping $f: \Omega \to \mathbb{R}$. That is :

 $#\lambda(B) = \lambda(f^{-1}(B)), \quad \forall B \in \mathcal{B}(\mathbb{R}).$

All moments of $\#\lambda$ are obtained by :

$$\#\lambda_j := \int_{\mathbb{R}} z^j \, d\#\lambda(z) = \int_{\Omega} f(\mathbf{x})^j \, \lambda(d\mathbf{x}), \quad j \in \mathbb{N}$$

^{ICP} If *f* is a POLYNOMIAL and Ω is a "SIMPLE" set, then the moments $(\#\lambda_j)_{j\in\mathbb{N}}$ are obtained in closed-form.

For instance Ω is a box, simplex, ellipsoid, ... and their affine transformations.

All moments of $\#\lambda$ are obtained by :

$$\#\lambda_j := \int_{\mathbb{R}} z^j d\#\lambda(z) = \int_{\Omega} f(\mathbf{x})^j \lambda(d\mathbf{x}), \quad j \in \mathbb{N}$$

For If *f* is a POLYNOMIAL and Ω is a "SIMPLE" set, then the moments $(\#\lambda_j)_{j\in\mathbb{N}}$ are obtained in closed-form.

For instance Ω is a box, simplex, ellipsoid, ... and their affine transformations.

A typical example : quadratic 0/1 problems

Introduction

The 0/1 problem

$$\min \{ f(\mathbf{x}) : \mathbf{A} \mathbf{x} = \mathbf{b}; \mathbf{x} \in \{0, 1\}^n \}$$

with $f \in \mathbb{R}[\mathbf{x}]_2$, and $\mathbf{A} \in \mathbf{Z}^{m \times n}$, $\mathbf{b} \in \mathbf{Z}^m$.

is exactly equivalent to the MAXCUT problem

 $\min \{ \tilde{f}(\mathbf{x}, x_0) : (\mathbf{x}, x_0) \in \{-1, 1\}^{n+1} \}$

where $\tilde{f} \in \mathbb{R}[\mathbf{x}, x_0]_2$ is explicit in terms of **A** and **b**.

Example 2016) : A MAX-CUT formulation of 0/1 programs, Oper. Res. Letters 44, pp. 158–164.

So here the set $\Omega = \{-1, 1\}^{n+1}$ is very simple !

A typical example : quadratic 0/1 problems

Introduction

The 0/1 problem

$$\min \{ f(\mathbf{x}) : \mathbf{A} \mathbf{x} = \mathbf{b}; \mathbf{x} \in \{0, 1\}^n \}$$

with
$$f \in \mathbb{R}[\mathbf{x}]_2$$
, and $\mathbf{A} \in \mathbf{Z}^{m \times n}$, $\mathbf{b} \in \mathbf{Z}^m$.

is exactly equivalent to the MAXCUT problem

$$\min\{\tilde{f}(\mathbf{x},x_0): (\mathbf{x},x_0) \in \{-1,1\}^{n+1}\}\$$

where $\tilde{f} \in \mathbb{R}[\mathbf{x}, x_0]_2$ is explicit in terms of **A** and **b**.

Example 2016) : A MAX-CUT formulation of 0/1 programs, Oper. Res. Letters 44, pp. 158–164.

So here the set $\Omega = \{-1, 1\}^{n+1}$ is very simple !

A typical example : quadratic 0/1 problems

Introduction

The 0/1 problem

$$\min \left\{ f(\mathbf{x}) : \mathbf{A} \, \mathbf{x} \,=\, \mathbf{b}; \quad \mathbf{x} \in \{0,1\}^n \right\}$$

with
$$f \in \mathbb{R}[\mathbf{x}]_2$$
, and $\mathbf{A} \in \mathbf{Z}^{m \times n}$, $\mathbf{b} \in \mathbf{Z}^m$.

is exactly equivalent to the MAXCUT problem

$$\min\{\tilde{f}(\mathbf{x},x_0): (\mathbf{x},x_0) \in \{-1,1\}^{n+1}\}\$$

where $\tilde{f} \in \mathbb{R}[\mathbf{x}, x_0]_2$ is explicit in terms of **A** and **b**.

Example 2016) : A MAX-CUT formulation of 0/1 programs, Oper. Res. Letters 44, pp. 158–164.

So here the set $\Omega = \{-1, 1\}^{n+1}$ is very simple !

Jean B. Lasserre

Introduction

Recall : $f_* = \min \{f(\mathbf{x}) : \mathbf{x} \in \Omega\}$ and $f^* = \max \{f(\mathbf{x}) : \mathbf{x} \in \Omega\}$

Key observation :

 f_* (resp f^*) is the left (resp. right) endpoint of the support of $\#\lambda$. Equivalently :

$$f^* = \max \{ \mathbf{x} : \mathbf{x} \in \operatorname{supp}(\#\lambda) \}$$

$$f_* = \min \{ \mathbf{x} : \mathbf{x} \in \operatorname{supp}(\#\lambda) \}$$

Lass (2011) : Bounding the support a measure from its marginal moments. Proc. Amer. Math. Soc. 139, pp. 3375–3382.

Hence on may apply the preceding approach to obtain a hierarchy of upper bounds $(\tau_t^{\ell})_{t \in \mathbb{N}}$ on f_* (and lower bounds $(\tau_t^{u})_{t \in \mathbb{N}}$ on f^*) BUT NOW ON A UNIVARIATE PROBLEM !

Jean B. Lasserre

Introduction

Recall : $f_* = \min \{f(\mathbf{x}) : \mathbf{x} \in \Omega\}$ and $f^* = \max \{f(\mathbf{x}) : \mathbf{x} \in \Omega\}$

Key observation :

 f_* (resp f^*) is the left (resp. right) endpoint of the support of $\#\lambda$. Equivalently :

$$f^* = \max \{ \mathbf{x} : \mathbf{x} \in \operatorname{supp}(\#\lambda) \}$$

$$f_* = \min \{ \mathbf{x} : \mathbf{x} \in \operatorname{supp}(\#\lambda) \}$$

Lass (2011) : Bounding the support a measure from its marginal moments. Proc. Amer. Math. Soc. 139, pp. 3375–3382.

For Hence on may apply the preceding approach to obtain a hierarchy of upper bounds $(\tau_t^{\ell})_{t \in \mathbb{N}}$ on f_* (and lower bounds $(\tau_t^{u})_{t \in \mathbb{N}}$ on f^*) BUT NOW ON A UNIVARIATE PROBLEM !

Illustration

The sequence

$$\tau_t^{\ell} := \max \left\{ \theta : \mathbf{M}_t(x; \#\lambda) \succeq \theta \mathbf{M}_t(\#\lambda) \right\}, \quad t \in \mathbb{N}$$

is monotone decreasing and converges to f_* as $t \to \infty$.

The sequence

$$\tau_t^{\boldsymbol{\mu}} := \min \left\{ \, \boldsymbol{\theta} : \, \boldsymbol{\theta} \, \mathbf{M}_t(\#\lambda) \succeq \, \mathbf{M}_t(x; \, \#\lambda) \, \right\}, \quad t \in \mathbb{N}$$

is monotone increasing and converges to f^* as $t \to \infty$.

Link with tri-diagonal Hankel matrices

J

Introduction

Let $(T_j)_{j \in \mathbb{N}}$ be a basis of ORTHONORMAL (univariate) POLYNOMIALS w.r.t. the measure $\#\lambda$, that is :

$$\int T_i T_j d\#\lambda = \delta_{i=j}, \quad \forall i,j \in \mathbb{N}.$$

In this new basis, the moment matrix $\widehat{\mathbf{M}}_t(\#\lambda)$ is the $(t+1) \times (t+1)$ identity matrix \mathbf{I}_t and therefore

$$\tau_t^{\ell} := \max \left\{ \theta : \, \widehat{\mathbf{M}}_t(x; \, \#\lambda) \succeq \, \theta \, \mathbf{I}_t, \right\} = \lambda_{\min}(\widehat{\mathbf{M}}_t(x; \, \#\lambda))$$
$$\tau_t^{\prime\prime} := \min \left\{ \theta : \, \theta \, \mathbf{I}_t \succeq \, \widehat{\mathbf{M}}_t(x; \, \#\lambda) \right\} = \lambda_{\max}(\widehat{\mathbf{M}}_t(x; \, \#\lambda))$$

The polynomials $(T_j)_{j \in \mathbb{N}}$ obey the three-term recurrence

 $x T_j(x) = a_j T_{j+1}(x) + b_j T_j(x) + a_{j-1} T_{j-1}(x),$ for all $x \in \mathbb{R}$ and $j \in \mathbb{N}$.

$$J = \begin{bmatrix} b_0 & a_0 & 0 & \cdots & \cdots & 0 \\ a_0 & b_1 & a_1 & 0 & \cdots & 0 \\ 0 & a_1 & b_2 & a_2 & \cdots & 0 \\ 0 & 0 & \cdots & \cdots & \cdots & 0 \end{bmatrix}$$

is called the *Jacobi matrix* associated with the orthonormal polynomials $(T_j)_{j \in \mathbb{N}}$;

Hence using the three-term recurrence relation :

$$\widehat{\mathbf{M}}_{t}(x; \#\lambda) = \begin{bmatrix} b_{0} & a_{0} & 0 & \cdots & \cdots & 0 \\ a_{0} & b_{1} & a_{1} & 0 & \cdots & 0 \\ 0 & a_{1} & b_{2} & a_{2} & \cdots & 0 \\ 0 & 0 & \cdots & \cdots & a_{t-1} & b_{t} \end{bmatrix}$$

is the *t*-truncation of the Jacobi matrix J.

and therefore :

 $\widehat{\mathbf{W}} \ \lambda_{\min}(\widehat{\mathbf{M}}_t(x; \#\lambda)) \text{ is the smallest root of polynomial } T_{t+1}.$ $\widehat{\mathbf{W}} \ \lambda_{\max}(\widehat{\mathbf{M}}_t(x; \#\lambda)) \text{ is the largest root of polynomial } T_{t+1}.$

Take home message

The global minimum f_* (resp. maximum f^*) of a polynomial on $\Omega \subset \mathbb{R}^n$ can be approximated from above (resp. from below) and as closely as desired, by a sequence $(\tau_t^{\ell})_{t \in \mathbb{N}} \downarrow f_*$ (resp. $(\tau_t^{u})_{t \in \mathbb{N}} \uparrow f^*$)

- τ_t^{ℓ} is the smallest root of the univariate orthonormal polynomial T_{t+1} .
- τ_t^u is the largest root of the univariate orthonormal polynomial T_{t+1} .

However

Computing the polynomials $(T_j)_{j \in \mathbb{N}}$ requires computing moments $(\#\lambda_j)_{j \in \mathbb{N}}$ of the measure $\#\lambda$

 \square needs to be simple enough (e.g., sphere, unit ball, unit box, simplex, etc.)

 \square can still be very tedious for large *t*

Another application of the pushforward

Introduction

Let f be a nonnegative homogeneous polynomial, and let

 $\Omega = \{ \mathbf{x} : f(\mathbf{x}) \le 1 \} \subset \mathbf{B}$, be compact.

Compute the Lebesgue volume

$$\boldsymbol{\rho} = \operatorname{vol}(\Omega) = \int_{\Omega} d\mathbf{x}$$

... and possibly the moments

$$\rho_{\alpha} = \int_{\Omega} \mathbf{x}^{\alpha} d\mathbf{x}, \quad \alpha \in \mathbb{N}^{n},$$

of the Lebesgue measure on Ω

Another application of the pushforward

Introduction

Let f be a nonnegative homogeneous polynomial, and let

 $\Omega = \{ \mathbf{x} : f(\mathbf{x}) \le 1 \} \subset \mathbf{B}$, be compact.

Compute the Lebesgue volume

$$\boldsymbol{\rho} = \operatorname{vol}(\Omega) = \int_{\Omega} d\mathbf{x}$$

... and possibly the moments

$$\boldsymbol{\rho}_{\boldsymbol{\alpha}} = \int_{\Omega} \mathbf{x}^{\boldsymbol{\alpha}} \, d\mathbf{x}, \quad \boldsymbol{\alpha} \in \mathbb{N}^n,$$

of the Lebesgue measure on Ω

Motivation

Introduction

It turns out that :

$$\operatorname{vol}(\Omega) = \int_{\Omega} d\mathbf{x} = \frac{1}{\Gamma(1+n/d)} \int_{\Omega} \exp(-f(\mathbf{x})) d\mathbf{x}.$$

see e.g. Morozov & Shakirov, Introduction to integral discriminants, J. High Energy physics

I. $\square \int_{\Omega} \exp(-f(\mathbf{x})) d\mathbf{x}$, called an integral discriminant, is ubiquitous in statistical and quantum Physics.

II. From the above formula it follows that

 \mathbb{C} vol(Ω) is a strictly CONVEX function of the coefficients of the polynomial f.

 \mathbb{P} very useful for solving the following Problem **P** :

P : Compute nonnegative homogeneous polynomial f of degree 2d such that $\mathbf{K} \subset \Omega$ and Ω has minimum volume.

where $\mathbf{K} \subset \mathbb{R}^n$ is a given compact (not necessarily convex) set.

Theorem

Problem P is a CONVEX problem with a unique optimal solution f*

II. From the above formula it follows that

 \mathbb{C} vol(Ω) is a strictly CONVEX function of the coefficients of the polynomial f.

 \mathbb{F} very useful for solving the following Problem **P** :

P : Compute nonnegative homogeneous polynomial f of degree 2d such that $\mathbf{K} \subset \Omega$ and Ω has minimum volume.

where $\mathbf{K} \subset \mathbb{R}^n$ is a given compact (not necessarily convex) set.

Theorem

Problem **P** is a CONVEX problem with a unique optimal solution f^*

Solution d = 2 (quadratic case) : Ω_{f^*} is the celebrated Löwner-John ellipsoid

For However, given f, computing vol (Ω_f) is difficult !

 $\square 𝔅 𝔅 d = 2$ (quadratic case) : Ω_{f*} is the celebrated Löwner-John ellipsoid

However, given f, computing vol (Ω_f) is difficult !

Computing $vol(\Omega)$

Introduction

Let λ be the Lebesgue probability measure on a box **B** $\supset \Omega$.

General approach

(i) Either approximate $vol(\Omega)$ by Monte-Carlo : λ -sample on **B** and COUNT points that fall into Ω . This provides a (random) estimate of $vol(\Omega)$.

(ii) Or $SOLVE^{\dagger}$ (or approximate)

$$\operatorname{vol}(\Omega) = \max_{\phi} \left\{ \phi(\Omega) : \phi \leq \lambda \right\}$$

where the "max" is over measures ϕ supported on Ω .

Henrion D., Lasserre J.B., Savorgnan C. (2009) Approximate volume and integration for basic semi-algebraic sets. SIAM Review 51, pp. 722–743

(i) \square simple method that can handle potentially relatively large dimensions. On the other hand, it only provides a (random) estimate of vol(Ω).

(ii) $\mathbb{P}^{\mathbb{P}} \phi^* := \lambda_{\Omega}$ is the unique optimal solution and applying the Moment-SOS hierarchy provides a monotone sequence of upper bounds $(\rho_d)_{d \in \mathbb{N}} \downarrow \operatorname{vol}(\Omega)$ as $d \to \infty$.

• Additional linear constraints coming from Stokes' theorem applied to ϕ^* significantly accelerate the (otherwise slow) convergence.

• However, in view of the present status of SDP-solvers, this method is limited to problems of modest size.

(i) Simple method that can handle potentially relatively large dimensions. On the other hand, it only provides a (random) estimate of vol(Ω).

(ii) $\mathbb{P}^{\mathbb{P}} \phi^* := \lambda_{\Omega}$ is the unique optimal solution and applying the Moment-SOS hierarchy provides a monotone sequence of upper bounds $(\rho_d)_{d \in \mathbb{N}} \downarrow \operatorname{vol}(\Omega)$ as $d \to \infty$.

• Additional linear constraints coming from Stokes' theorem applied to ϕ^* significantly accelerate the (otherwise slow) convergence.

• However, in view of the present status of SDP-solvers, this method is limited to problems of modest size.

(i) \square simple method that can handle potentially relatively large dimensions. On the other hand, it only provides a (random) estimate of vol(Ω).

(ii) $\mathbb{C}^{\bullet} \phi^* := \lambda_{\Omega}$ is the unique optimal solution and applying the Moment-SOS hierarchy provides a monotone sequence of upper bounds $(\rho_d)_{d \in \mathbb{N}} \downarrow \operatorname{vol}(\Omega)$ as $d \to \infty$.

• Additional linear constraints coming from Stokes' theorem applied to ϕ^* significantly accelerate the (otherwise slow) convergence.

• However, in view of the present status of SDP-solvers, this method is limited to problems of modest size.

Jean B. Lasserre

Stokes' theorem

Introduction

With vector field $X = \mathbf{x}$, and $\alpha \in \mathbb{N}^n$ arbitrary :

$$0 = \int_{\Omega} \operatorname{Div}(X \cdot \mathbf{x}^{\alpha}(1-f)) \, dx = \int \operatorname{Div}(X \cdot \mathbf{x}^{\alpha}(1-f)) \, d\phi^*$$
$$= \int \underbrace{\mathbf{x}^{\alpha} \left[(n+|\alpha|) \left(1-f \right) - \langle \mathbf{x}, \nabla f \rangle \right]}_{p_{\alpha}(\mathbf{x})} \, d\phi^*$$
$$= \int p_{\alpha}(\mathbf{x}) \, d\phi^* \quad \text{a moment constraint on } \phi^*$$

Hence one may equivalently solve :

$$\operatorname{vol}(\Omega) = \max_{\phi \in \mathscr{M}(\Omega)} \{ \phi(\Omega) : \phi \leq \lambda; \quad \int p_{\alpha} \, d\phi = 0, \quad \alpha \in \mathbb{N}^n \}$$

The associated relaxations of the Moment-SOS hierarchy converge much faster!

Jean B. Lasserre

Stokes' theorem

Introduction

With vector field $X = \mathbf{x}$, and $\alpha \in \mathbb{N}^n$ arbitrary :

$$0 = \int_{\Omega} \operatorname{Div}(X \cdot \mathbf{x}^{\alpha}(1-f)) \, dx = \int \operatorname{Div}(X \cdot \mathbf{x}^{\alpha}(1-f)) \, d\phi^{*}$$
$$= \int \underbrace{\mathbf{x}^{\alpha} \left[(n+|\alpha|) \left(1-f\right) - \langle \mathbf{x}, \nabla f \rangle \right]}_{p_{\alpha}(\mathbf{x})} \, d\phi^{*}$$
$$= \int p_{\alpha}(\mathbf{x}) \, d\phi^{*} \quad \text{a moment constraint on } \phi^{*}$$

Hence one may equivalently solve :

$$\operatorname{vol}(\Omega) = \max_{\phi \in \mathscr{M}(\Omega)} \left\{ \phi(\Omega) : \phi \leq \lambda; \quad \int p_{\alpha} \, d\phi = 0, \quad \alpha \in \mathbb{N}^n \right\}$$

The associated relaxations of the Moment-SOS hierarchy converge much faster!

Another approach via the pushforward

Introduction

Let the measure $\#\lambda$ on \mathbb{R} be the pushforward of λ by the mapping $f : \mathbf{B} \to \mathbb{R}$.

That is :	
$\#\lambda(B) = \lambda(f^{-1}(B)),$	$orall B \in \mathcal{B}(\mathbb{R}).$

 \overline{f}

Let $I := f(\mathbf{B}) \subset \mathbb{R}$. Notice that :

All moments γ_k of $\#\lambda$ are obtained in closed form. That is :

$$\gamma_k := \int_{I} z^k d\#\lambda(z) = \int_{\mathbf{B}} f(\mathbf{x})^k \lambda(d\mathbf{x}), \quad k = 0, 1, \dots$$

Next, observe that

$$f(\Omega) = \{ z \in I : 0 \le z \le 1 \}.$$

$$\#\lambda([0,1]) = \int_{0 \le z \le 1} \#\lambda(dz) = \lambda(f^{-1}([0,1])) = \lambda(\Omega)$$

Then:

That is, computing the *n*-dimensional volume ρ is computing the one-dimensional measure of the interval [0, 1] for the measure $\#\lambda$ on \mathbb{R} ...

Therefore Jasour et al.[†] et al. suggest to solve :

 $\rho = \max_{\phi} \{ \phi([0,1]) : \phi \leq \#\lambda; \operatorname{supp}(\phi) = [0,1] \}$

Indeed $\phi^* = 1_{[0,1]}(z) d \# \lambda(z)$ is the unique optimal solution.

† A. Jasour, A. Hofmann, and B.C. Williams. Moment-Sum-Of-Squares Approach For Fast Risk Estimation In Uncertain Environments, arXiv:1810.01577, 2018.

$$\#\lambda([0,1]) = \int_{0 \le z \le 1} \#\lambda(dz) = \lambda(f^{-1}([0,1])) = \lambda(\Omega)$$

Then:

That is, computing the *n*-dimensional volume ρ is computing the one-dimensional measure of the interval [0, 1] for the measure $\#\lambda$ on \mathbb{R} ...

Therefore Jasour et al.^{\dagger} et al. suggest to solve :

 $\rho = \max_{\phi} \{ \phi([0,1]) : \phi \leq \#\lambda; \operatorname{supp}(\phi) = [0,1] \}$

Indeed $\phi^* = 1_{[0,1]}(z) d \# \lambda(z)$ is the unique optimal solution.

† A. Jasour, A. Hofmann, and B.C. Williams. Moment-Sum-Of-Squares Approach For Fast Risk Estimation In Uncertain Environments, arXiv:1810.01577, 2018.

Hence

^{IFF} One has replaced computation of the *n*-dimensional Lebesgue-volume of Ω by computation of the 1-dimensional $\#\lambda$ -volume of the interval [0, 1]

The value ρ can be approximated as closely as desired by solving appropriate SDP relaxations associated with the Moment-SOS hierarchy.

However ...

Convergence $(\rho_d)_{d \in \mathbb{N}} \downarrow \rho$ is typically VERY SLOW !

¹³⁷ One cannot use Stokes constraints because one does not know the density of $\#\lambda$.

Hence

^{IFF} One has replaced computation of the *n*-dimensional Lebesgue-volume of Ω by computation of the 1-dimensional $\#\lambda$ -volume of the interval [0, 1]

The value ρ can be approximated as closely as desired by solving appropriate SDP relaxations associated with the Moment-SOS hierarchy.

However ...

Convergence $(\rho_d)_{d \in \mathbb{N}} \downarrow \rho$ is typically VERY SLOW !

¹³⁷ One cannot use Stokes constraints because one does not know the density of $\#\lambda$.

Hence

^{IFF} One has replaced computation of the *n*-dimensional Lebesgue-volume of Ω by computation of the 1-dimensional $\#\lambda$ -volume of the interval [0, 1]

The value ρ can be approximated as closely as desired by solving appropriate SDP relaxations associated with the Moment-SOS hierarchy.

However ...

Convergence $(\rho_d)_{d \in \mathbb{N}} \downarrow \rho$ is typically VERY SLOW !

^{ICF} One cannot use Stokes constraints because one does not know the density of $\#\lambda$.

The homogeneous case

Introduction

Take home message :

When f is homogeneous then one can do much better !

Let
$$\phi_j^* = \int_{[0,1]} z^j d\#\lambda(z), \quad j = 0, 1, \dots$$

so that $\rho = \lambda(\Omega) = \phi_0^*$.

The homogeneous case

Introduction

Take home message :

When f is homogeneous then one can do much better !

Let
$$\phi_j^* = \int_{[0,1]} z^j d\#\lambda(z), \quad j = 0, 1, \dots$$

so that $\rho = \lambda(\Omega) = \phi_0^*$.

Suppose that f is NONNEGATIVE and HOMOGENEOUS of degree t. Then by Stokes' Theorem with vector field $X = \mathbf{x}$:

$$0 = \int_{\Omega} \left[n \left(1 - f(\mathbf{x})^{j} \right) + \langle \mathbf{x}, \nabla (1 - f(\mathbf{x})^{j}) \rangle \right] d\lambda(\mathbf{x})$$

$$= n \lambda(\Omega) - (n + jt) \int_{\Omega} f(\mathbf{x})^{j} d\lambda(\mathbf{x})$$

$$= n \lambda(\Omega) - (n + jt) \int_{f(\Omega)} z^{j} d\#\lambda(z)$$

$$= n \phi_{0}^{*} - (n + jt) \phi_{j}^{*}, \quad j = 1, 2, \dots$$

Jean B. Lasserre

Theorem

Introduction

Let $(\phi_i^*)_{i \in \mathbb{N}}$ be the moments of ϕ^* . Then :

Introduction

$$\phi_j^* = \frac{n}{n+jt} \phi_0^*, \quad j = 1, 2, \dots$$

As a consequence the moment matrix $H_d(\phi^*)$ of ϕ^* , is just $\phi_0^* H_d^*$ with :

$$H_d^* = \begin{bmatrix} 1 & \frac{n}{n+t} & \cdots & \frac{n}{n+dt} \\ \frac{n}{n+t} & \cdots & \cdots & \frac{n}{n+(d+1)t} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{n}{n+dt} & \cdots & \cdots & \frac{n}{n+2dt} \end{bmatrix}$$

which is the moment matrix of the probability measure

$$d\gamma(x) = \frac{n}{t} x^{\frac{n}{t}-1} dx \quad \text{on } [0,1]$$

Jean B. Lasserre

Theorem

Introduction

Let $(\phi_i^*)_{i \in \mathbb{N}}$ be the moments of ϕ^* . Then :

Introduction

$$\phi_j^* = \frac{n}{n+jt} \phi_0^*, \quad j = 1, 2, \dots$$

As a consequence the moment matrix $H_d(\phi^*)$ of ϕ^* , is just $\phi_0^* H_d^*$ with :

$$H_d^* = \begin{bmatrix} 1 & \frac{n}{n+t} & \cdots & \frac{n}{n+dt} \\ \frac{n}{n+t} & \cdots & \cdots & \frac{n}{n+(d+1)t} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{n}{n+dt} & \cdots & \cdots & \frac{n}{n+2dt} \end{bmatrix}$$

which is the moment matrix of the probability measure

$$d\gamma(x) = \frac{n}{t} x^{\frac{n}{t}-1} dx \quad \text{on } [0,1]$$

But then :

 $ho = \max_{\phi} \left\{ \phi(\mathbb{R}) : \phi \leq \#\lambda; \operatorname{supp}(\phi) = [0,1] \right\}$

can be approximated as closely as desired by

$$\tau_d = \max_{\theta} \left\{ \theta : \theta H_d^* \preceq H_d(\#\lambda) \right\} \\ = \lambda_{\min}(H_d(\#\lambda), H_d^*)$$

a GENERALIZED EIGENVALUE PROBLEM associated with two HANKEL moment matrices.

Theorem

 $\tau_d \downarrow \rho \text{ as } d \to \infty.$

But then :

 $ho = \max_{\phi} \left\{ \phi(\mathbb{R}) : \phi \leq \# \lambda; \operatorname{supp}(\phi) = [0, 1] \right\}$

can be approximated as closely as desired by

$$\tau_d = \max_{\theta} \left\{ \theta : \theta H_d^* \preceq H_d(\#\lambda) \right\} \\ = \lambda_{\min}(H_d(\#\lambda), H_d^*)$$

a GENERALIZED EIGENVALUE PROBLEM associated with two HANKEL moment matrices.

Theorem

$$\tau_d \downarrow \rho \text{ as } d \to \infty.$$

Introduction

To visualize & appreciate the simplicity of the approach, let n = 2 and $f(x) = ||\mathbf{x}||^2 = x_1^2 + x_2^2$, and $\mathbf{B} = [-1, 1]^2$, so that $vol(\Omega) = \pi$. Then :

$$H_1^* = \begin{bmatrix} 1 & 1/2 \\ 1/2 & 1/3 \end{bmatrix}; \quad H_1(\#\lambda) = \begin{bmatrix} 1 & 2/3 \\ 2/3 & 28/45 \end{bmatrix}$$

This yields $4 \cdot \tau_1 \approx 3.20$ which is already a good upper bound on π whereas $4 \cdot \rho_1 = 4$.

$$H_2^* = \begin{bmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & 1/5 \end{bmatrix}; H_2(\#\lambda) = \begin{bmatrix} 1 & \frac{2}{3} & \frac{28}{45} \\ \frac{2}{3} & \frac{28}{45} & \frac{24}{35} \\ \frac{28}{45} & \frac{24}{35} & \frac{24}{35} \\ \frac{28}{45} & \frac{24}{35} & \frac{2}{9} + \frac{8}{21} + \frac{6}{25} \end{bmatrix}$$

This yields $4 \cdot \tau_2 \approx 3.1440$ while $4 \cdot \rho_2 = 3.8928$. Hence $4 \cdot \tau_2$ already provides a very good upper bound on π with only moments of order 4.

Introduction

To visualize & appreciate the simplicity of the approach, let n = 2 and $f(x) = ||\mathbf{x}||^2 = x_1^2 + x_2^2$, and $\mathbf{B} = [-1, 1]^2$, so that $vol(\Omega) = \pi$. Then :

$$H_1^* = \begin{bmatrix} 1 & 1/2 \\ 1/2 & 1/3 \end{bmatrix}; \quad H_1(\#\lambda) = \begin{bmatrix} 1 & 2/3 \\ 2/3 & 28/45 \end{bmatrix}$$

This yields $4 \cdot \tau_1 \approx 3.20$ which is already a good upper bound on π whereas $4 \cdot \rho_1 = 4$.

$$H_2^* = \begin{bmatrix} 1 & 1/2 & 1/3 \\ 1/2 & 1/3 & 1/4 \\ 1/3 & 1/4 & 1/5 \end{bmatrix}; H_2(\#\lambda) = \begin{bmatrix} 1 & \frac{2}{3} & \frac{28}{45} \\ \frac{2}{3} & \frac{24}{45} & \frac{24}{35} \\ \frac{28}{45} & \frac{24}{35} & \frac{2}{9} + \frac{8}{81} + \frac{6}{25} \end{bmatrix}$$

This yields $4 \cdot \tau_2 \approx 3.1440$ while $4 \cdot \rho_2 = 3.8928$. Hence $4 \cdot \tau_2$ already provides a very good upper bound on π with only moments of order 4.

d	d = 1	d = 2	d = 3	d = 4	d = 5
ρ_d	12.19	11.075	9.163	8.878	8.499
$ au_d$	6.839	5.309	5.001	4.945	4.936

TABLE – n = 4, $\rho = 4.9348$; ρ_d versus τ_d

d	d = 3	d = 4	<i>d</i> = 5	d = 6	<i>d</i> = 7	d = 8
$2^n \tau_d$	7.97	5.569	4.639	4.272	4.133	4.083
$\frac{(2^n\tau_d-\rho^*)}{\rho^*}$	96%	37%	14%	5.26%	1.83%	0.60%

TABLE – n = 8, $\rho = 4.0587$; τ_d and relative error

THANK YOU!

Jean B. Lasserre* Optimization & 3-diagonal Hankel matrices