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Let :

Ω ⊂ Rn be a compact set,

f : Ω → R be a continuous function,

and consider the optimization problem :

Ω := f∗ = min
x

{ f (x) : x ∈ Ω }
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Background : A converging hierarchy of upper bounds

• Let Σ[x]t be the convex cone of Sum-of-Squares polynomials
(SOS) of degree at most 2t.

• Let λ be a Borel measure whose support is EXACTLY Ω, i.e.,
Ω is the smallest closed set such that λ(Rn \ Ω) = 0.

A converging hierarchy of UPPER BOUNDS
For every t ∈ N, let

ρt := min
σ

{
∫
Ω

f σ dλ :

∫
Ω
σ dλ = 1; σ ∈ Σ[x]t }

� ρt ≥ f∗ because σ dλ is a prob. measure on Ω, and so :

f ≥ f ∗ on Ω ⇒
∫
Ω

f σ dλ ≥ f∗

∫
Ω
σ dλ︸ ︷︷ ︸
=1

= f∗.
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Hence ρt+1 ≥ ρt ≥ f∗ for all t ∈ N.

The dual reads :

ρ∗t := max
θ

{Mt(f λ) � θ Mt(λ) }

where

Mt(λ) is the MOMENT matrix of order t, associated with
the measure λ

Mt(f λ)) is the LOCALIZING matrix of order t, associated
with the measure λ and the function f .

� Computing ρ∗t is solving a Generalized Eigenvalue Problem
for the pair of matrices (Mt(λ),Mt(f λ)).
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• The Moment matrix Mt(λ) associated with λ is real
symmetric, with rows & columns indexed by α ∈ Nt, and with
entries

Mt(λ)(α, β) =

∫
Ω

xα+β dλ, α, β ∈ Nn
t

• The Localizing matrix Mt(λ) associated with λ and the
function f is real symmetric, with rows & columns indexed by
α ∈ Nt, and with entries

Mt(f λ)(α, β) =

∫
Ω

f (x) xα+β dλ, α, β ∈ Nn
t

� If Ω is a “SIMPLE" set and f is a “POLYNOMI!AL" then ρt

can be computed easily
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Illustrative Example

Let n = 2, B = [−1, 1]2, f (x) = x1x2 + x2
2, and λ be the

Lebesgue measure on B. Then

Mt(λ) = 4

 1 0 0
0 1

3 0
0 0 1

3

 ; M1(f λ) = 4

 1
3 0 0
0 1

9
1
9

0 1
9

1
5

 .

Hence

ρ∗1 = max { θ :

 1
3 0 0
0 1

9
1
9

0 1
9

1
5

 � θ

 1 0 0
0 1

3 0
0 0 1

3

}
f ∗ = 0 ≤ ρ∗1 ≈ 0.22
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� Typical examples of such "simple sets" Ω are :

- Box [a, b]n and Simplex {x : eTx ≤ 1},

- ellipsoid {x : xTQx ≤ 1} for Q � 0, and sphere,

- Hypercube {−1, 1}n

- Rn (with λ the Gaussian measure), positive orthant Rn
+ (with λ

the exponential measure)

as well as their affine transformations.
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Theorem (Lass (2011))
Let Ω be compact with nonempty interior. Then ρ∗t = ρt ≥ f∗
for all t. In addition the sequence (ρt)t∈N is monotone
decreasing and converges to f∗, that is, ρt ↓ f∗ as t → ∞.

� If Mt(λ) and Mt(f λ) are expressed in the basis of
polynomials (Tα)α∈Nn orthonormal w.r.t. λ, then :

ρt = λmin(Mt(f λ)).

� However one still has to compute the smallest eigenvalue of
a real symmetric matrix of size

(n+t
n

)
� Lass (2011) : A new look at nonnegativity on closed sets and
polynomial optimization, SIAM J. Optim. 21, pp. 864–885.
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As an illustrative example consider the bivariate Motzkin-like
polynomial

x 7→ f (x) := x3
14x2

2 + x2
1x4

2 − 3 x2
1x2

2 + 1,

whig has 4 global minimizers. Below is the optimal SOS density
σ∗ of degree 24.
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In a relatively recent series of papers E. De Klerk and M.
Laurent (Netherlands) and collaborators have provided detailed
analysis of the convergence ρt ↓ f∗ as t → ∞.

In a number of interesting cases where :

Ω is a simple set (e.g., box, sphere), and

λ is an appropriate well-known measure (Lebesgue,
Chebyshev, rotation invariant, etc.)

they could prove O(1/t2) rates of convergence.

� De Klerk, Laurent, Sun (2017) Convergence analysis for
Lasserre’s measure-based hierarchy of upper bounds for
polynomial optimization, Math. Program. 162, 1, p. 363-392
� de Klerk, Laurent (2018) Worst-case examples for
Lasserre’s measure-based hierarchy for polynomial optimization
on the hypercube, Math. Oper. Res.
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A new approach via a simple transformation

Let the measure #λ on R be the pushforward of λ by the
mapping f : Ω → R. That is :

#λ(B) = λ(f−1(B)), ∀B ∈ B(R).

f∗ = min { f (x) : x ∈ Ω} f ∗ = max { f (x) : x ∈ Ω}
Jean B. Lasserre∗ Optimization & 3-diagonal Hankel matrices
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All moments of #λ are obtained by :

#λj :=

∫
R

zj d#λ(z) =

∫
Ω

f (x)j λ(dx), j ∈ N

� If f is a POLYNOMIAL and Ω is a “SIMPLE" set, then the
moments (#λj)j∈N are obtained in closed-form.

For instance Ω is a box, simplex, ellipsoid, ... and their affine
transformations.
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A typical example : quadratic 0/1 problems

The 0/1 problem

min { f (x) : A x = b; x ∈ {0, 1}n }

with f ∈ R[x]2, and A ∈ Zm×n, b ∈ Zm.

is exactly equivalent to the MAXCUT problem

min { f̃ (x, x0) : (x, x0) ∈ {−1, 1}n+1 }

where f̃ ∈ R[x, x0]2 is explicit in terms of A and b.

� Lass (2016) : A MAX-CUT formulation of 0/1 programs,
Oper. Res. Letters 44, pp. 158–164.

� So here the set Ω = {−1, 1}n+1 is very simple !
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Recall : f∗ = min { f (x) : x ∈ Ω} and f ∗ = max { f (x) : x ∈ Ω}

Key observation :

f∗ (resp f ∗) is the left (resp. right) endpoint of the support of #λ.
Equivalently :

f ∗ = max { x : x ∈ supp(#λ) }
f∗ = min { x : x ∈ supp(#λ) }

� Lass (2011) : Bounding the support a measure from its
marginal moments. Proc. Amer. Math. Soc. 139, pp. 3375–3382.

� Hence on may apply the preceding approach to obtain a
hierarchy of upper bounds (τ `t )t∈N on f∗ (and lower bounds
(τ u

t )t∈N on f ∗) BUT NOW ON A UNIVARIATE PROBLEM!
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Illustration

Multivariate pb with λ → Univariate pb with #λ

Jean B. Lasserre∗ Optimization & 3-diagonal Hankel matrices



Jean B. Lasserre∗

Introduction

17/41

Introduction

The sequence

τ `t := max { θ : Mt( x; #λ) � θ Mt(#λ) }, t ∈ N

is monotone decreasing and converges to f∗ as t → ∞.

The sequence

τ u
t := min { θ : θ Mt(#λ) � Mt(x; #λ) }, t ∈ N

is monotone increasing and converges to f ∗ as t → ∞.
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Link with tri-diagonal Hankel matrices

Let (Tj)j∈N be a basis of ORTHONORMAL (univariate)
POLYNOMIALS w.r.t. the measure #λ, that is :∫

Ti Tj d#λ = δi=j, ∀i, j ∈ N.

In this new basis, the moment matrix M̂t(#λ) is the
(t + 1)× (t + 1) identity matrix It and therefore

τ `t := max { θ : M̂t( x; #λ) � θ It, } = λmin(M̂t(x; #λ))

τ u
t := min { θ : θ It � M̂t(x; #λ) } = λmax(M̂t(x; #λ))
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The polynomials (Tj)j∈N obey the three-term recurrence

x Tj(x) = aj Tj+1(x) + bj Tj(x) + aj−1 Tj−1(x),

for all x ∈ R and j ∈ N.

J =


b0 a0 0 · · · · · · 0
a0 b1 a1 0 · · · 0
0 a1 b2 a2 · · · 0
0 0 · · · · · · · · · 0


is called the Jacobi matrix associated with the orthonormal
polynomials (Tj)j∈N ;
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Hence using the three-term recurrence relation :

M̂t(x; #λ) =


b0 a0 0 · · · · · · 0
a0 b1 a1 0 · · · 0
0 a1 b2 a2 · · · 0
0 0 · · · · · · at−1 bt


is the t-truncation of the Jacobi matrix J.

and therefore :

� λmin(M̂t(x; #λ)) is the smallest root of polynomial T t+1.

� λmax(M̂t(x; #λ)) is the largest root of polynomial T t+1.
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Take home message

The global minimum f∗ (resp. maximum f ∗) of a polynomial on
Ω ⊂ Rn can be approximated from above (resp. from below) and
as closely as desired, by a sequence (τ `t )t∈N ↓ f∗ (resp.
(τ u

t )t∈N ↑ f ∗)

τ `t is the smallest root of the univariate orthonormal
polynomial Tt+1.

τ u
t is the largest root of the univariate orthonormal

polynomial Tt+1.
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However
Computing the polynomials (Tj)j∈N requires computing
moments (#λj)j∈N of the measure #λ

� Ω needs to be simple enough (e.g., sphere, unit ball, unit
box, simplex, etc.)

� can still be very tedious for large t
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Another application of the pushforward

Let f be a nonnegative homogeneous polynomial, and let

Ω = { x : f (x) ≤ 1 } ⊂ B, be compac.t

Compute the Lebesgue volume

ρ = vol(Ω) =

∫
Ω

dx

... and possibly the moments

ρα =

∫
Ω

xα dx, α ∈ Nn,

of the Lebesgue measure on Ω
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Motivation

It turns out that :

vol(Ω) =

∫
Ω

dx =
1

Γ(1 + n/d)

∫
Ω
exp(−f (x)) dx.

see e.g. Morozov & Shakirov, Introduction to integral
discriminants, J. High Energy physics

I.�
∫
Ω
exp(−f (x)) dx, called an integral discriminant, is

ubiquitous in statistical and quantum Physics.
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II. From the above formula it follows that

� vol(Ω) is a strictly CONVEX function of the coefficients of
the polynomial f .

� very useful for solving the following Problem P :
P : Compute nonnegative homogeneous polynomial f of degree
2d such that K ⊂ Ω and Ω has minimum volume.

where K ⊂ Rn is a given compact (not necessarily convex) set.

Theorem

� Problem P is a CONVEX problem with a unique optimal
solution f ∗
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� d = 2 (quadratic case) : Ωf ∗ is the celebrated Löwner-John
ellipsoid

� However, given f , computing vol(Ωf ) is difficult !
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Computing vol(Ω)

Let λ be the Lebesgue probability measure on a box B ⊃ Ω.

General approach

(i) Either approximate vol(Ω) by Monte-Carlo : λ-sample on B
and COUNT points that fall into Ω. This provides a (random)
estimate of vol(Ω).

(ii) Or SOLVE† (or approximate)

vol(Ω) = max
φ

{φ(Ω) : φ ≤ λ }

where the “max" is over measures φ supported on Ω.

�† Henrion D., Lasserre J.B., Savorgnan C. (2009) Approximate volume and integration for basic

semi-algebraic sets. SIAM Review 51, pp. 722–743
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(i)� simple method that can handle potentially relatively large
dimensions. On the other hand, it only provides a (random)
estimate of vol(Ω).

(ii)� φ∗ := λΩ is the unique optimal solution and applying the
Moment-SOS hierarchy provides a monotone sequence of upper
bounds (ρd)d∈N ↓ vol(Ω) as d → ∞.

• Additional linear constraints coming from Stokes’ theorem
applied to φ∗ significantly accelerate the (otherwise slow)
convergence.
• However, in view of the present status of SDP-solvers, this
method is limited to problems of modest size.
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Stokes’ theorem
With vector field X = x, and α ∈ Nn arbitrary :

0 =

∫
Ω

Div(X · xα(1 − f )) dx =

∫
Div(X · xα(1 − f )) dφ∗

=

∫
xα [(n + |α|) (1 − f )− 〈x,∇f 〉]︸ ︷︷ ︸

pα(x)

dφ∗

=

∫
pα(x) dφ∗ a moment constraint on φ∗

Hence one may equivalently solve :

vol(Ω) = max
φ∈M (Ω)

{φ(Ω) : φ ≤ λ;

∫
pα dφ = 0, α ∈ Nn}

� The associated relaxations of the Moment-SOS hierarchy
converge much faster !
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With vector field X = x, and α ∈ Nn arbitrary :

0 =

∫
Ω

Div(X · xα(1 − f )) dx =

∫
Div(X · xα(1 − f )) dφ∗

=

∫
xα [(n + |α|) (1 − f )− 〈x,∇f 〉]︸ ︷︷ ︸

pα(x)

dφ∗

=

∫
pα(x) dφ∗ a moment constraint on φ∗

Hence one may equivalently solve :

vol(Ω) = max
φ∈M (Ω)

{φ(Ω) : φ ≤ λ;

∫
pα dφ = 0, α ∈ Nn}

� The associated relaxations of the Moment-SOS hierarchy
converge much faster !
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Another approach via the pushforward

Let the measure #λ on R be the pushforward of λ by the
mapping f : B → R.

That is :

#λ(B) = λ(f−1(B)), ∀B ∈ B(R).
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Let I := f (B) ⊂ R. Notice that :

All moments γk of #λ are obtained in closed form. That is :

γk :=

∫
I
zk d#λ(z) =

∫
B

f (x)k λ(dx), k = 0, 1, . . .

Next, observe that

f (Ω) = {z ∈ I : 0 ≤ z ≤ 1 }.
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Then :

#λ([0, 1]) =

∫
0≤z≤1

#λ(dz) = λ(f−1([0, 1])) = λ(Ω)

That is, computing the n-dimensional volume ρ is computing the
one-dimensional measure of the interval [0, 1] for the measure
#λ on R . . .

� Therefore Jasour et al.† et al. suggest to solve :

ρ = max
φ

{φ([0, 1]) : φ ≤ #λ; supp(φ) = [0, 1] }

Indeed φ∗ = 1[0,1](z) d#λ(z) is the unique optimal solution.

† A. Jasour, A. Hofmann, and B.C. Williams. Moment-Sum-Of-Squares Approach For Fast Risk Estimation In

Uncertain Environments, arXiv:1810.01577, 2018.
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Hence

� One has replaced computation of the n-dimensional
Lebesgue-volume of Ω by computation of the 1-dimensional
#λ-volume of the interval [0, 1]

The value ρ can be approximated as closely as desired by
solving appropriate SDP relaxations associated with the
Moment-SOS hierarchy.

However ...

� Convergence (ρd)d∈N ↓ ρ is typically VERY SLOW!

� One cannot use Stokes constraints because one does not
know the density of #λ.
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The homogeneous case

Take home message :
When f is homogeneous then one can do much better !

Let φ∗
j =

∫
[0,1]

zj d#λ(z), j = 0, 1, . . .

so that ρ = λ(Ω) = φ∗
0.
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Suppose that f is NONNEGATIVE and HOMOGENEOUS of
degree t. Then by Stokes’ Theorem with vector field X = x :

0 =

∫
Ω

[
n (1 − f (x)j) + 〈x,∇(1 − f (x)j)〉

]
dλ(x)

= nλ(Ω)− (n + jt)
∫
Ω

f (x)j dλ(x)

= nλ(Ω)− (n + jt)
∫

f (Ω)
zj d#λ(z)

= nφ∗
0 − (n + jt)φ∗

j , j = 1, 2, . . .
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Theorem
Let (φ∗

j )j∈N be the moments of φ∗. Then :

φ∗
j =

n
n + j t

φ∗
0, j = 1, 2, . . .

As a consequence the moment matrix Hd(φ
∗) of φ∗, is just

φ∗
0 H∗

d with :

H∗
d =


1 n

n+t · · · n
n+d t

n
n+t · · · · · · n

n+(d+1) t
· · · · · · · · · · · ·

n
n+d t · · · · · · n

n+2d t



� which is the moment matrix of the probability measure

dγ(x) =
n
t

x
n
t −1 dx on [0, 1]
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But then :

ρ = max
φ

{φ(R) : φ ≤ #λ; supp(φ) = [0, 1] }

can be approximated as closely as desired by

τd = max
θ

{ θ : θ H∗
d � Hd(#λ) }

= λmin(Hd(#λ),H∗
d)

a GENERALIZED EIGENVALUE PROBLEM associated with
two HANKEL moment matrices.

Theorem
τd ↓ ρ as d → ∞.
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To visualize & appreciate the simplicity of the approach, let
n = 2 and f (x) = ‖x‖2 = x2

1 + x2
2, and B = [−1, 1]2, so that

vol(Ω) = π. Then :

H∗
1 =

[
1 1/2

1/2 1/3

]
; H1(#λ) =

[
1 2/3

2/3 28/45

]
This yields 4 · τ1 ≈ 3.20 which is already a good upper bound on
π whereas 4 · ρ1 = 4.

H∗
2 =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 ;H2(#λ) =

 1 2
3

28
45

2
3

28
45

24
35

28
45

24
35

2
9 + 8

21 + 6
25


This yields 4 · τ2 ≈ 3.1440 while 4 · ρ2 = 3.8928. Hence 4 · τ2
already provides a very good upper bound on π with only
moments of order 4.
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d d = 1 d = 2 d = 3 d = 4 d = 5
ρd 12.19 11.075 9.163 8.878 8.499
τd 6.839 5.309 5.001 4.945 4.936

TABLE – n = 4, ρ = 4.9348 ; ρd versus τd

d d = 3 d = 4 d = 5 d = 6 d = 7 d = 8
2nτd 7.97 5.569 4.639 4.272 4.133 4.083

(2nτd−ρ∗)
ρ∗ 96% 37% 14% 5.26% 1.83% 0.60%

TABLE – n = 8, ρ = 4.0587 ; τd and relative error
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THANK YOU!
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