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Let:
@ QCR'"bea set,
ef:Q0 > Rbea function,

and consider the optimization problem :

Q:=f = mxln{f(x) xeQ}
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Background : A converging hierarchy of upper bounds

e Let X[x], be the convex cone of polynomials
( ) of degree at most 2¢.

e Let A be a Borel measure whose support is EXACTLY (2, i.e.,
() is the smallest closed set such that A(R" \ ©) = 0.

A converging hierarchy of UPPER BOUNDS

For every t € N, let

pr = min{/fad)\: /od)\ =1, oeXx}
g Q Q
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Background : A converging hierarchy of upper bounds

e Let X[x], be the convex cone of polynomials
( ) of degree at most 2¢.

e Let A be a Borel measure whose support is EXACTLY (2, i.e.,
() is the smallest closed set such that A(R" \ ©) = 0.

A converging hierarchy of UPPER BOUNDS

For every t € N, let

pr = min{/fad)\: /od)\ =1, oeXx}
g Q Q

IE" ), > f. because o d)\ is a prob. measure on €2, and so :

f>f"onQ = /Qfad)\ > £, /Qad/\ = f.
—

=1
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Hence p,y1 > p; > fiforallt € N.

The dual reads :

p; = meax{M,(f)\) = OM,(\) }

where

@ M,()) is the matrix of order ¢, associated with
the measure \

e M;(f \)) is the matrix of order 7, associated
with the measure A and the function f.
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Hence p,y1 > p; > fiforallt € N.

The dual reads :

p; = meax{M,(f)\) = OM,(\) }

where

@ M,()) is the matrix of order ¢, associated with
the measure \

e M;(f \)) is the matrix of order 7, associated
with the measure A and the function f.

I¥" Computing p; is solving a
for the pair of matrices (M;(\), M,(f \)).
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Hence p,y1 > p; > fiforallt € N.

The dual reads :

p; = meax{M,(f)\) = OM,(\) }

where

@ M,()) is the matrix of order ¢, associated with
the measure \

e M;(f \)) is the matrix of order 7, associated
with the measure A and the function f.

I¥" Computing p; is solving a
for the pair of matrices (M;(\), M,(f \)).
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e The matrix M, () associated with A is real
symmetric, with rows & columns indexed by o € N, and with
entries

M, (M) (e, B) = /Qxa+ﬁdA, o, €N

e The matrix M, () associated with \ and the
function f is real symmetric, with rows & columns indexed by
a € N, and with entries

M,(f \)(a, B) = /Q FE XA, a8 € NI
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e The matrix M, () associated with A is real
symmetric, with rows & columns indexed by o € N, and with
entries

M, (M) (e, B) = /Qxa+ﬁdA, o, €N

e The matrix M, () associated with \ and the
function f is real symmetric, with rows & columns indexed by
a € N, and with entries

M,(f \)(a, B) = /Q FE XA, a8 € NI

" I[fQisa setand f is a then p,
can be computed easily
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[lustrative Example

Letn =2,B = [—1,1]%, f(x) = x1x2 + x3, and A be the
Lebesgue measure on B. Then

100 ;00
M(A) =401 0| ;M(fN)=4]0 § 3
003 03 4
Hence
100 1 00
pi=max{0: |0 & 5| =00 1 0}
05 4 00}

ff=0< pl~022
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IE” Typical examples of such "simple sets" € are :
- Box [a, b]" and Simplex {x : e'x < 1},

- ellipsoid {x : x’Qx < 1} for Q = 0, and sphere,
- Hypercube {—1,1}"

- R™ (with A the Gaussian measure), positive orthant R’} (with A
the exponential measure)

as well as their affine transformations.
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Theorem (Lass (2011))

Let §) be compact with nonempty interior. Then p; = p; > [
for all t. In addition the sequence (p;)cN is monotone
decreasing and converges to f., that is, p; | [« ast — oc.

IE" If M, () and M, (f \) are expressed in the basis of
polynomials (7, )qene orthonormal w.r.t. A, then :

pr = Amin(Mi(f 1))
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Theorem (Lass (2011))

Let §) be compact with nonempty interior. Then p; = p; > [
for all t. In addition the sequence (p;)cN is monotone
decreasing and converges to f., that is, p; | [« ast — oc.

IE" If M, () and M, (f \) are expressed in the basis of
polynomials (7, )qene orthonormal w.r.t. A, then :

pr = Amin(Mi(f 1))

I¥" However one still has to compute the smallest eigenvalue of

a real symmetric matrix of size (":’)

= : A new look at nonnegativity on closed sets and
polynomial optimization, SIAM J. Optim. 21, pp. 864-885.
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As an illustrative example consider the bivariate Motzkin-like
polynomial

X = f(X) 1= x34x3 + x3xg — 303 + 1,

whig has 4 global minimizers. Below is the optimal SOS density
o* of degree 24.
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In a relatively recent series of papers E. De Klerk and M.
Laurent (Netherlands) and collaborators have provided detailed
analysis of the convergence p; | fi. ast — oo.

In a number of interesting cases where :
o () is a simple set (e.g., box, sphere), and

@ )\ is an appropriate well-known measure (Lebesgue,
Chebyshev, rotation invariant, etc.)

they could prove O(1/1?) rates of convergence.

5" De Klerk, Laurent, Sun (2017) Convergence analysis for
Lasserre’s measure-based hierarchy of upper bounds for
polynomial optimization, Math. Program. 162, 1, p. 363-392

IE” de Klerk, Laurent (2018) Worst-case examples for
Lasserre’s measure-based hierarchy for polynomial optimization
on the hypercube, Math. Oper. Res.
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A new approach via a simple transformation

Let the measure # )\ on R be the of \ by the
mapping f : {2 — R. That is :

#A(B) = Mf~'(B)), VB e B(R).

/ fiRE SR

Q)
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A new approach via a simple transformation

Let the measure # )\ on R be the of \ by the
mapping f : {2 — R. That is :

#A(B) = Mf~'(B)), VB e B(R).

/ fiRE SR
/ I /o

Q)

fe =min{f(x) : x € Q} ff=max{f(x):x € Q}
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All moments of #\ are obtained by :

/z’d#/\ /fx)f/\dx) jeN
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All moments of #\ are obtained by :

/z’d#/\ /fx)f/\dx) jeN

¥ Iffisa and Qs a set, then the
moments (# ););cy are obtained in closed-form.

For instance €2 is a , R , ... and their affine
transformations.
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A typical example : quadratic 0/1 problems

The 0/1 problem

min{f(x): Ax =Db; xe€{0,1}"}
with f € R[x],, and A € Z"*", b € Z™.

Jean B. Lasserre ™ Optimization & 3-diagonal Hankel matrices



Introduction

A typical example : quadratic 0/1 problems

The 0/1 problem
min{f(x): Ax =Db; xe€{0,1}"}
with f € R[x],, and A € Z"*", b € Z™.

is exactly equivalent to the MAXCUT problem

min {f(x,x0) :  (X,x0) € {—1,1}""1}

where f € R[x, xo], is explicit in terms of A and b.

=3 A MAX-CUT formulation of 0/1 programs,
Oper. Res. Letters 44, pp. 158-164.
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A typical example : quadratic 0/1 problems

The 0/1 problem
min{f(x): Ax =Db; xe€{0,1}"}
with f € R[x],, and A € Z"*", b € Z™.

is exactly equivalent to the MAXCUT problem

min {f(x,x0) :  (X,x0) € {—1,1}""1}

where f € R[x, xo], is explicit in terms of A and b.

=3 A MAX-CUT formulation of 0/1 programs,
Oper. Res. Letters 44, pp. 158-164.

12" So here the set Q = {—1, 1}"+! is very simple !
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Recall : f, = min {f(x) : x € Q} and /" = max {f(x) : x € Q}

Key observation :

fx (resp f7) is the (resp. ) of the support of #A\.
Equivalently :

f* = max{X: X € Supp(#)\)}
fi = min{x: x € supp(#\)}

5" Lass (2011) : Bounding the support a measure from its
marginal moments. Proc. Amer. Math. Soc. 139, pp. 3375-3382.
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Recall : f, = min {f(x) : x € Q} and /" = max {f(x) : x € Q}

Key observation :

fx (resp f7) is the (resp. ) of the support of #A\.
Equivalently :

f* = max{X: X € Supp(#)\)}
fi = min{x: x € supp(#\)}

5" Lass (2011) : Bounding the support a measure from its
marginal moments. Proc. Amer. Math. Soc. 139, pp. 3375-3382.

5" Hence on may apply the preceding approach to obtain a
hierarchy of upper bounds (7/),cx on f. (and lower bounds
(7/)1en on f*) BUT NOW ON A UNIVARIATE PROBLEM !
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Ilustration
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The sequence

Tf = max{0: M;(x; #)\) = OM,(#)N)}, teN

is monotone decreasing and converges to f. as t — co.

The sequence

7/ = min{60: OM(#X\) = M(x; #)\) }, teN

is monotone increasing and converges to * as t — 0.
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Link with tri-diagonal Hankel matrices

Let (7;)jen be a basis of
w.r.t. the measure # ), that is :

/ d#)\ = 5i:j7 Vi,j € N.

In this new basis, the moment matrix M,(#A) is the
(t+ 1) x (¢ + 1) identity matrix I, and therefore

Tf = maX{93 Mz(x; #A) = Qlt;} — )\min(Mt(x; #)‘))

7' = min{60: 01, = M,(x; #N)} = /\max(Mt(x; #A))
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The polynomials (7;);cn obey the three-term recurrence

xTj(x) = a;Tji1(x) + b Ti(x) + a1 Tj-1 (%),
forallx € Randj € N.

by ag 0 0
ap bl aq 0 0
0 aj b2 ar 0
0 0 -+ oo «oo 0
1s called the associated with the orthonormal

polynomials (7))jen’;
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Hence using the three-term recurrence relation :

bO ap 0 0
o _la by aa O - 0
M;(X, #)\) - 0 aq bz ar e 0
0 o --- ... a;_q bt

is the #-truncation of the Jacobi matrix

and therefore :

=" A\min (1\7[, (x; #X)) is the smallest root of polynomial 7', ;.

¥ Aax (I\A/I,(x; #))) is the largest root of polynomial 7', .

Jean B. Lasserre™ Optimization & 3-di al Hankel matrices



Introduction

Take home message

The global minimum f; (resp. maximum /™) of a polynomial on
2 C R" can be approximated from above (resp. from below) and
as closely as desired, by a sequence (7/);en | f. (resp.
()en 1)
o 7! is the smallest root of the univariate orthonormal
polynomial

o 7/ is the largest root of the univariate orthonormal
polynomial
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However
Computing the polynomials (7);en requires computing
moments (#\;j);jcn of the measure # \

IE” () needs to be simple enough (e.g., sphere, unit ball, unit
box, simplex, etc.)

IS can still be very tedious for large ¢
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Another application of the pushforward

Let f be a nonnegative homogeneous polynomial, and let

Q={x:f(x) <1} C B, becompac.t

Compute the Lebesgue volume

p = vol(Q) = /de
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Another application of the pushforward

Let f be a nonnegative homogeneous polynomial, and let

Q={x:f(x) <1} C B, becompac.t

Compute the Lebesgue volume
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Motivation

1
vol(2) = /de = T+ n/d) /Qexp(—f(x))dx.

see e.g. Morozov & Shakirov, Introduction to integral
discriminants,

I /exp )) dx, called an ,is

ubiquitous in statistical and quantum Physics.
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II. From the above formula it follows that

¥ vol(Q2) is a function of the of
the polynomial f.

IE” very useful for solving the following Problem P :

P : Compute polynomial f of degree
2d such that K C 2 and (2 has

where K C R" is a given compact (not necessarily convex) set.
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II. From the above formula it follows that

¥ vol(Q2) is a function of the of
the polynomial f.

IE” very useful for solving the following Problem P :

P : Compute polynomial f of degree
2d such that K C 2 and (2 has

where K C R" is a given compact (not necessarily convex) set.

Theorem

2" Problem P is a CONVEX problem with a
f*
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IS" ¢ = 2 (quadratic case) : )y~ is the celebrated Lowner-John
ellipsoid
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IS" ¢ = 2 (quadratic case) : )y~ is the celebrated Lowner-John
ellipsoid

¥ However, given f, computing vol(€)) is difficult!
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Computing vol(€2)

Let )\ be the Lebesgue probability measure on a box B D (2.

General approach

(i) Either approximate vol({2) by Monte-Carlo : A-sample on B
and COUNT points that fall into €2. This provides a (random)
estimate of vol(£2).

(ii) Or SOLVE' (or approximate)

vol(2) = max{ () : ¢ < A}

)

where the “max" is over measures ¢ supported on 2.

16>

T Henrion D., Lasserre J.B., Savorgnan C. (2009) Approximate volume and integration for basic

semi-algebraic sets. SIAM Review 51, pp. 722-743
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(i) ¥ simple method that can handle potentially relatively large
dimensions. On the other hand, it only provides a
of vol(£2).

(ii) ¥ ¢* := )\ is the unique optimal solution and applying the
provides a of upper
bounds (pg)sen | vol(€2) as d — oo.
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(i) ¥ simple method that can handle potentially relatively large
dimensions. On the other hand, it only provides a
of vol(£2).

(ii) ¥ ¢* := )\ is the unique optimal solution and applying the
provides a of upper
bounds (pg)sen | vol(€2) as d — oo.

e Additional linear constraints coming from Stokes’ theorem
applied to ¢* the (otherwise slow)
convergence.
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(i) ¥ simple method that can handle potentially relatively large
dimensions. On the other hand, it only provides a
of vol(£2).

(ii) ¥ ¢* := )\ is the unique optimal solution and applying the
provides a of upper
bounds (pg)sen | vol(€2) as d — oo.

e Additional linear constraints coming from Stokes’ theorem
applied to ¢* the (otherwise slow)
convergence.

e However, in view of the present status of SDP-solvers, this
method is limited to problems of
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Stokes’ theorem

With vector field X = x, and o € N” arbitrary :

0 = /QDiv(X-xo‘(l—f))dx:/Div(X-xo‘(l—f))d(/>*
- / x* [(n-+]a]) (1 =) = (x V)] do*

Pa(x)

= / Pa(X)d¢”  amoment constraint on ¢*
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Stokes’ theorem

With vector field X = x, and o € N” arbitrary :

0 = /QDiv(X-xo‘(l—f))dx:/Div(X-xo‘(l—f))d(/>*
==/fWHmM£ﬂ@de

Pa(x)

= / Pa(X)d¢”  amoment constraint on ¢*

Hence one may equivalently solve :

vol(Q) = Oén/f}zc {o() : 0 < A /padozo, a e N'}

5" The associated relaxations of the Moment-SOS hierarchy
converge much faster !
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Another approach via the pushforward

Let the measure #\ on R be the of \ by the
mapping f : B — R.

#X(B) = Mf~'(B)), VB e B(R).
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Let/ :=f(B) C R. Notice that :

All moments ~y; of #\ are obtained in closed form. That is :

Ve 1=/zd#)\ /f k=0,1,...

Next, observe that

f(Q)={zel:0<z<1}.

Optimization & 3-diagonal Hankel matrices



Introduction

Jean B. Lasserre ™ Optimization & 3-diagonal Hankel matrices



Introduction

40([0,1]) = / #M(dD) = A0, 1)) = A©)

0<z<1

That is, computing the n-dimensional volume p is computing the

for the measure
#lonR ...

15" Therefore Jasour et al.' et al. suggest to solve :

p = mgx{@([(), 1]) : ¢ < #A; supp(¢) = [0,1] }

Indeed ¢ = 1j9,1)(z) d#\(z) is the unique optimal solution.

T A. Jasour, A. Hofmann, and B.C. Williams. Moment-Sum-Of-Squares Approach For Fast Risk Estimation In

Uncertain Environments, arxXxiv:1810.01577,2018.
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IE" One has replaced computation of the n-dimensional
Lebesgue-volume of €2 by computation of the 1-dimensional
#A-volume of the interval [0, 1]
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IE" One has replaced computation of the n-dimensional
Lebesgue-volume of €2 by computation of the 1-dimensional
#A-volume of the interval [0, 1]

The value p can be approximated as closely as desired by
solving appropriate SDP relaxations associated with the
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IE” One has replaced computation of the n-dimensional
Lebesgue-volume of €2 by computation of the 1-dimensional
#A-volume of the interval [0, 1]

The value p can be approximated as closely as desired by
solving appropriate SDP relaxations associated with the

¥ Convergence (p4)4en 4 p is typically VERY SLOW !

IZ" One cannot use Stokes constraints because one does not
know the density of #\.
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The homogeneous case

Take home message :

When f is homogeneous then one can do much better !
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The homogeneous case

Take home message :
When f is homogeneous then one can do much better !

Let o;f:/ dd#Nz), j=0,1,...
' [0,1]

so that p = A(Q2) = ¢;.
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Suppose that f is and of
degree 7. Then by Stokes’ Theorem with vector field X = x :

0 = /[( FEY) + (%, V(1= F(x))] dA®)
Q
= X = (1+7) [ F A
= n)\(Q)—(n+j)/ 7 d#A(z)
1(Q)

= nogg—(n+j)e;, j=12,...
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Theorem
Let (¢} )jen be the moments of ¢*. Then :

n
fe g =12,
¢J l’l+_] ¢07 J 9 =)
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Theorem
Let (¢} )jen be the moments of ¢*. Then :

n
F = —— B i=1,2,...
¢J I’l-l-] ¢07 J ) <~y

As a consequence the moment matrix Hy(¢*) of ¢, is just
oo Hy with

| n
n+ n+d
H), = n+ n+(d+1)

n+d n+2d

BS" which is the moment matrix of the probability measure

dy(x) = —x “'dx on|0,1]
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But then :

p=max{¢(R): ¢ < #X; supp(¢) = [0, 1] }

can be approximated as closely as desired by

7 = max{0: OH; < Ha(#))}
= Amin(Ha(#N), Hy)

a associated with
two moment matrices.
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But then :

p=max{¢(R): ¢ < #X; supp(¢) = [0, 1] }

can be approximated as closely as desired by

7 = max{0: OH; < Ha(#))}
= Amin(Ha(#N), Hy)

a associated with
two moment matrices.

Theorem
Tad pasd— oo.
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To visualize & appreciate the simplicity of the approach, let
n=2andf(x) = ||x]|> =27 +x3,and B = [—1, 1], so that
vol(§2) = 7. Then :

Hf = [ 1}2 iﬁ }? Hi(#2) = [2}3 234315 }

This yields 4 - 71 =~ 3.20 which is already a good upper bound on
m whereas 4 - p; = 4.
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To visualize & appreciate the simplicity of the approach, let
n=2andf(x) = ||x]|> =27 +x3,and B = [—1, 1], so that
vol(§2) = 7. Then :

Hf = [ 1}2 iﬁ }? Hi(#2) = [2}3 234315 }

This yields 4 - 71 =~ 3.20 which is already a good upper bound on
m whereas 4 - p; = 4.

1 1/2 1/3 1 2 %
Hy=|1/2 1/3 1/4 |;H(#N)=| 3 2 %
1/3 1/4 1/5 2 O N S

This yields 4 - 7 ~ 3.1440 while 4 - p, = 3.8928. Hence 4 - 7
already provides a very good upper bound on 7 with only
moments of order 4.
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d|d=1|d=2|d=3|d=4|d=5
pa | 12.19 | 11.075 | 9.163 | 8.878 | 8.499
T4 | 6.839 | 5.309 | 5.001 | 4.945 | 4.936

TABLE —n =4, p = 4.9348; p, versus 7,

d d=3|d=4]d=5]d=6]d=7]d=3
7, | 797 | 5569 | 4.639 | 4272 | 4.133 | 4.083
O 96% | 37% | 14% | 5.26% | 1.83% | 0.60%

TABLE —n = 8, p = 4.0587; 7; and relative error

Jean B. Lasserre™
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