Structured algorithms for algebraic curves

Simon Abelard

Laboratoire Cryptologie et Composants Thales SIX GTS France

Two research axes

Point counting:

Cryptographic applications:

- Constructive: discrete log.
- Destructive: VDF (verifiable-delay functions)

Riemann-Roch spaces:

Applications:

- Symbolic integration
- Arithmetic in Jacobians
- Algebraic Geometry codes

Common Denominator:

- Algebraic curves
- Protection of information
- Computer Algebra
- Structured problems

Part I : hyperelliptic point counting

Input: hyperelliptic curve $y^2 = f(x)$ over \mathbb{F}_p . **Problem:** how many solutions of $y^2 = f(x) \mod p$?

Example: $y^2 = x^7 - 7x^5 + 14x^3 - 7x + 42$ over $\mathbb{F}_{2^{64}-59}$. Parameters: *p*, degree of *f* denoted 2g + 1 (*g* is the **genus**).

Example: $y^2 = x^7 - 7x^5 + 14x^3 - 7x + 42$ over $\mathbb{F}_{2^{64}-59}$. Parameters: *p*, degree of *f* denoted 2g + 1 (*g* is the **genus**).

Polynomial-time algorithms

Input size: $O(g \log p)$. Algorithm polynomial in $g \log p$? \rightsquigarrow open problem.

Example: $y^2 = x^7 - 7x^5 + 14x^3 - 7x + 42$ over $\mathbb{F}_{2^{64}-59}$. Parameters: *p*, degree of *f* denoted 2g + 1 (*g* is the **genus**).

Polynomial-time algorithms

Input size: $O(g \log p)$. Algorithm polynomial in $g \log p$? \rightsquigarrow open problem.

- *p*-adic approaches are polynomial in *g*. (i.e. $(pg)^{O(1)}$)
- ℓ -adic approaches are polynomial in log p. (i.e. $(\log p)^{e(g)}$)

Example: $y^2 = x^7 - 7x^5 + 14x^3 - 7x + 42$ over $\mathbb{F}_{2^{64}-59}$. Parameters: *p*, degree of *f* denoted 2g + 1 (*g* is the **genus**).

Polynomial-time algorithms

Input size: $O(g \log p)$. Algorithm polynomial in $g \log p$? \rightsquigarrow open problem.

- *p*-adic approaches are polynomial in *g*. (i.e. $(pg)^{O(1)}$)
- ℓ -adic approaches are polynomial in log p.

Our contributions: large p, exponent of $\log p$ depends on g.

(i.e. $(\log p)^{e(g)}$)

From curves to groups

J = Jac(C) is the Jacobian, its elements are formal sums of points.

Let $C: y^2 = f(x)$ be a hyperelliptic curve over \mathbb{F}_q .

Let J be its Jacobian and g its genus. We want $N = #J(\mathbb{F}_q)$.

- (Hasse-Weil) bounds on N \Rightarrow compute N mod ℓ
- ℓ -torsion $J[\ell] = \{D \in J | \ell D = 0\} \simeq (\mathbb{Z}/\ell\mathbb{Z})^{2g}$
- **3** Action of Frobenius $\pi : (x, y) \mapsto (x^q, y^q)$ on $J[\ell]$ yields $N \mod \ell$

Algorithm a la Schoof

For sufficiently many primes ℓ

Describe I_{ℓ} the ideal of ℓ -torsion Compute action of π on $J[\ell]$ Deduce $N \mod \ell$ Recover N by CRT

Let $C: y^2 = f(x)$ be a hyperelliptic curve over \mathbb{F}_q .

- Let J be its Jacobian and g its genus. We want $N = #J(\mathbb{F}_q)$.
 - $(Hasse-Weil) bounds on N \Rightarrow compute N mod l$

 - Solution of Frobenius $\pi : (x, y) \mapsto (x^q, y^q)$ on $J[\ell]$ yields $N \mod \ell$

Algorithm a la Schoof

For sufficiently many primes ℓ Describe I_{ℓ} the ideal of ℓ -torsion Compute action of π on $J[\ell]$ Deduce $N \mod \ell$ Recover N by CRT

Let $C: y^2 = f(x)$ be a hyperelliptic curve over \mathbb{F}_q .

- Let J be its Jacobian and g its genus. We want $N = #J(\mathbb{F}_q)$.
 - $(Hasse-Weil) bounds on N \Rightarrow compute N mod l$
 - ℓ -torsion $J[\ell] = \{D \in J | \ell D = 0\} \simeq (\mathbb{Z}/\ell\mathbb{Z})^{2g}$
 - **3** Action of Frobenius $\pi : (x, y) \mapsto (x^q, y^q)$ on $J[\ell]$ yields $N \mod \ell$

Algorithm a la Schoof

For sufficiently many primes ℓ Describe I_{ℓ} the ideal of ℓ -torsion Compute action of π on $J[\ell]$ Deduce $N \mod \ell$ Recover N by CRT

Let $C: y^2 = f(x)$ be a hyperelliptic curve over \mathbb{F}_q .

- Let J be its Jacobian and g its genus. We want $N = #J(\mathbb{F}_q)$.
 - $(Hasse-Weil) bounds on N \Rightarrow compute N mod l$
 - ℓ -torsion $J[\ell] = \{D \in J | \ell D = 0\} \simeq (\mathbb{Z}/\ell\mathbb{Z})^{2g}$
 - Solution of Frobenius $\pi : (x, y) \mapsto (x^q, y^q)$ on $J[\ell]$ yields $N \mod \ell$

Algorithm a la Schoof

For sufficiently many primes ℓ Describe I_{ℓ} the ideal of ℓ -torsion Compute action of π on $J[\ell]$ Deduce $N \mod \ell$ Recover N by CRT

Main tasks: find equations for I_{ℓ} (and bound their degree). Solve these equations (i.e. find a Gröbner basis for I_{ℓ}).

Contribution I, genus-3 curves

Asymptotic complexities

Genus	Complexity	
g=1	$\widetilde{O}(\log^4 p)$	S
g = 2	$\widetilde{O}(\log^8 p)$	
g = 2, RM curves	$\widetilde{O}(\log^5 p)$	
g = 3	$\widetilde{O}(\log^{14} p)$	
g = 3, RM curves	$\widetilde{O}(\log^6 p)$	

Authors Schoof, Elkies, Atkin (~1990) Gaudry, Schost (2000) Gaudry, Kohel, Smith (2011) Our work¹ Our work¹

Practical experiment¹

Curve $y^2 = x^7 - 7x^5 + 14x^3 - 7x + 42$ over $\mathbb{F}_{2^{64}-59}$. Record computation : 64-bit p, Jacobian has order $\sim 2^{192}$.

¹A., Gaudry, Spaenlehauer. Proceedings of ANTS 2018

Applications: Verifiable Delay Functions (VDF)

Function *f* such that:

- Evaluation $x \mapsto f(x)$ slow and sequential (hard to parallelize).
- Verifying that y = f(x) is fast.

Use of VDFs: randomness, power-saving blockchains.

Construction: $f(\gamma) = \gamma^{2^{\tau}}$, γ in a group of unknown order.

Applications: Verifiable Delay Functions (VDF)

Function *f* such that:

- Evaluation $x \mapsto f(x)$ slow and sequential (hard to parallelize).
- Verifying that y = f(x) is fast.

Use of VDFs: randomness, power-saving blockchains.

Construction: $f(\gamma) = \gamma^{2^{\tau}}$, γ in a group of unknown order.

Use case: the group is the **Jacobian of a curve**. Point counting \rightsquigarrow order of the Jacobian, must be infeasible. Improvement on point counting \rightsquigarrow threatens security. Applications: Verifiable Delay Functions (VDF)

Function *f* such that:

- Evaluation $x \mapsto f(x)$ slow and sequential (hard to parallelize).
- Verifying that y = f(x) is fast.

Use of VDFs: randomness, power-saving blockchains.

Construction: $f(\gamma) = \gamma^{2^{\tau}}$, γ in a group of unknown order.

Use case: the group is the **Jacobian of a curve**. Point counting \rightsquigarrow order of the Jacobian, must be infeasible. Improvement on point counting \rightsquigarrow threatens security.

Impact of our work:

- Choosing safe parameters (p large enough)
- Avoid certain weaker curves

Remember: our problem boils down to a polynomial system.

Remember: our problem boils down to a polynomial system.

In theory:

- 6 equations of degree $O(\ell^2)$
- Solved using trivariate resultants (good when few variables, good complexity results)
- Final complexity: $\widetilde{O}(\log^{14} q)$

Remember: our problem boils down to a polynomial system.

In theory:

- 6 equations of degree $O(\ell^2)$
- Solved using trivariate resultants (good when few variables, good complexity results)
- Final complexity: $\widetilde{O}(\log^{14} q)$

In practice for $\ell = 3$:

- 5 equations and variables degrees ≤ 55
- Solved using Gröbner bases (F4 in Magma): apparently nice structure but no proven complexity bounds
- Runs in 2 weeks using 140 GB of RAM
- $\ell = 5$ is out of reach in practice

Remember: our problem boils down to a polynomial system.

In theory:

- 6 equations of degree $O(\ell^2)$
- Solved using trivariate resultants (good when few variables, good complexity results)
- Final complexity: $\widetilde{O}(\log^{14} q)$

In practice for $\ell = 3$:

- 5 equations and variables degrees ≤ 55
- Solved using Gröbner bases (F4 in Magma): apparently nice structure but no proven complexity bounds
- Runs in 2 weeks using 140 GB of RAM

•
$$\ell = 5$$
 is out of reach in practice

Culprit: size of ℓ -torsion (ℓ^6 in genus 3). \Rightarrow Look for more favorable curves.

Tuning Schoof's algorithm using RM

An RM family (Mestre'91,Tautz-Top-Verberkmoes'91) Family $C_t : y^2 = x^7 - 7x^5 + 14x^3 - 7x + t$ with $t \neq \pm 2$. \rightarrow hyperelliptic curves of genus 3. Set η_7 root of $X^3 + X^2 - 2X - 1$, $\mathbb{Z}[\eta_7] \subset \text{End}(\text{Jac}(C_t))$.

Tuning Schoof's algorithm using RM

An RM family (Mestre'91, Tautz-Top-Verberkmoes'91) Family $C_t : y^2 = x^7 - 7x^5 + 14x^3 - 7x + t$ with $t \neq \pm 2$. \rightarrow hyperelliptic curves of genus 3. Set η_7 root of $X^3 + X^2 - 2X - 1$, $\mathbb{Z}[\eta_7] \subset \text{End}(\text{Jac}(C_t))$.

Example: (13) =
$$(2 - \eta_7 - 2\eta_7^2)(-2 + 2\eta_7 + \eta_7^2)(3 + \eta_7 - \eta_7^2)$$
.

The 13-torsion is direct sum of three kernels of endomorphisms. We model these kernels instead \rightsquigarrow 3 systems with:

- 5 variables (like $\ell = 3$ before)
- 5 equations of degrees \leq 52 (smaller than case $\ell=3)$

As before, use Gröbner bases in practice $(3 \times 3 \text{ days and } 41 \text{ GB})$.

Tuning Schoof's algorithm using RM

An RM family (Mestre'91, Tautz-Top-Verberkmoes'91) Family $C_t : y^2 = x^7 - 7x^5 + 14x^3 - 7x + t$ with $t \neq \pm 2$. \rightarrow hyperelliptic curves of genus 3. Set η_7 root of $X^3 + X^2 - 2X - 1$, $\mathbb{Z}[\eta_7] \subset \text{End}(\text{Jac}(C_t))$.

Example: (13) =
$$(2 - \eta_7 - 2\eta_7^2)(-2 + 2\eta_7 + \eta_7^2)(3 + \eta_7 - \eta_7^2)$$
.

The 13-torsion is direct sum of three kernels of endomorphisms. We model these kernels instead \rightsquigarrow 3 systems with:

- 5 variables (like $\ell = 3$ before)
- 5 equations of degrees \leq 52 (smaller than case $\ell=$ 3)

As before, use Gröbner bases in practice (3 \times 3 days and 41 GB).

In theory: 3 systems but degrees in $O(\ell^{2/3})$ instead of $O(\ell^2)$. Final complexity result: $\widetilde{O}((\log q)^6)$ for genus-3 RM hyp. curves.

A practical example

 $C_{42}: y^2 = x^7 - 7x^5 + 14x^3 - 7x + 42$ over \mathbb{F}_p with $p = 2^{64} - 59$.

$mod\ \ell^k$	#var	degree bounds	time	memory
2		_	—	—
4 (inert ²)	6	15	1 min	negl.
3 (inert)	5	55	14 days	140 GB
$13 = \mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3$	5	52	3 imes 3 days	41 GB

A practical example

 $C_{42}: y^2 = x^7 - 7x^5 + 14x^3 - 7x + 42$ over \mathbb{F}_p with $p = 2^{64} - 59$.

$\mod \ell^k$	#var	degree bounds	time	memory
2		—	—	—
4 (inert ²)	6	15	1 min	negl.
3 (inert)	5	55	14 days	140 GB
$13 = \mathfrak{p}_1\mathfrak{p}_2\mathfrak{p}_3$	5	52	3 imes 3 days	41 GB

Finishing the computation

Like in genus 2, end with exponential collision search. [Matsuo-Chao-Tsujii'02,Gaudry-Schost'04,Galbraith-Ruprai'09]. Modular info saves factor $156^{3/2} \simeq 1950$. Cost: 105 CPU-days done in a few hours.

Contribution II, curves of arbitrary genus

Behavior of the exponent when g grows Adleman-Huang (2001): $e(g) \in O(g^2 \log g)$.

 $^2\text{A.},$ Gaudry, Spaenlehauer. Foundations of Comput. Math., 2019 $^3\text{A.}$ Journal of Complexity, 2020

Simon Abelard

Structured algorithms

Contribution II, curves of arbitrary genus

Behavior of the exponent when g grows

Adleman-Huang (2001): $e(g) \in O(g^2 \log g)$.

Our work:

- Linear bound for exponent².
- Constant exponent in the RM-case³.

 $^2\text{A.},$ Gaudry, Spaenlehauer. Foundations of Comput. Math., 2019 $^3\text{A.}$ Journal of Complexity, 2020

Simon Abelard

Contribution II, curves of arbitrary genus

Behavior of the exponent when g grows

Adleman-Huang (2001): $e(g) \in O(g^2 \log g)$.

Our work:

- Linear bound for exponent².
- Constant exponent in the RM-case³.

Applications:

- Algorithmic questions (deterministic polynomial factorization).
- Program equivalence (Barthe, Jacomme, Kremer, 2020).

³A. Journal of Complexity, 2020

²A., Gaudry, Spaenlehauer. Foundations of Comput. Math., 2019

Different strategy: describe I_{ℓ} with g^2 equations and variables.

Different strategy: describe I_{ℓ} with g^2 equations and variables.

g variables $O(g^2)$ equations degree in $O_g(\ell^3)$

 $O(g^2)$ variables $O(g^2)$ equations degree in $O_g(1)$

Different strategy: describe I_{ℓ} with g^2 equations and variables.

g variables $O(g^2)$ equations degree in $O_g(\ell^3)$

 $O(g^2)$ variables $O(g^2)$ equations degree in $O_g(1)$ Geometric resolution (Giusti-Lecerf-Salvy'01, Cafure-Matera'06)

Assume f_1, \dots, f_n have degrees $\leq d$ and form a reduced regular sequence, and let $\delta = \max_i \deg \langle f_1, \dots, f_i \rangle$. There is an algorithm computing a geometric resolution in time polynomial in δ , d, n.

Different strategy: describe I_{ℓ} with g^2 equations and variables.

g variables $O(g^2)$ equations degree in $O_g(\ell^3)$

 $O(g^2)$ variables $O(g^2)$ equations degree in $O_g(1)$ Geometric resolution (Giusti-Lecerf-Salvy'01, Cafure-Matera'06) Assume f_1, \dots, f_n have degrees $\leq d$ and form a reduced regular sequence, and let $\delta = \max_i \deg \langle f_1, \dots, f_i \rangle$. There is an algorithm computing a geometric resolution in time polynomial in δ , d, n.

With $\delta = O_g(\ell^{3g})$ bounded by multihomogeneous Bézout bound. Both $d = O_g(\ell^3)$ and $n = O_g(1)$ are harmless for our bound.

Part II: Riemann-Roch spaces

Problem: find all the G(X,Y)/H(X,Y) such that
Z must be a zero of G,
the P_i can be zeroes of H,

• G/H has no other pole.

Applications: arithmetic in Jacobians, AG codes, etc.

Set $C = \mathbb{P}^1$, P = [0:1], Z = [1:1] and D = P - Z. Previous slide: $\frac{X-1}{X}$ is a solution (one pole in P and one zero in Z). **Riemann-Roch theorem:** $\frac{X-1}{X}$ generates the solution space.

Set $C = \mathbb{P}^1$, P = [0:1], Z = [1:1] and D = P - Z. Previous slide: $\frac{X-1}{X}$ is a solution (one pole in P and one zero in Z). **Riemann-Roch theorem:** $\frac{X-1}{X}$ generates the solution space.

Our strategy

Denominator H passes through P. This means $H(X, Y) \mod X = 0$.

Set $C = \mathbb{P}^1$, P = [0:1], Z = [1:1] and D = P - Z. Previous slide: $\frac{X-1}{X}$ is a solution (one pole in P and one zero in Z). **Riemann-Roch theorem:** $\frac{X-1}{X}$ generates the solution space.

Our strategy

Denominator H passes through P. This means $H(X, Y) \mod X = 0$. Numerators G pass through Z. It means $G(X, Y) = 0 \mod (X - 1)$.

Set $C = \mathbb{P}^1$, P = [0:1], Z = [1:1] and D = P - Z. Previous slide: $\frac{X-1}{X}$ is a solution (one pole in P and one zero in Z). **Riemann-Roch theorem:** $\frac{X-1}{X}$ generates the solution space.

Our strategy

Denominator *H* passes through *P*. This means $H(X, Y) \mod X = 0$. Numerators *G* pass through *Z*. It means $G(X, Y) = 0 \mod (X - 1)$. We recover the solution $\frac{X-1}{X}$.

Divisors and Riemann-Roch spaces

Smooth divisor *D*: finite formal sum $\sum_P m_P P$ of smooth points on *C*. Degree of a divisor: deg(*D*) = $\sum_P m_P$.

Riemann-Roch space L(D): set of rational functions h such that

- If $m_P < 0$, P has to be a zero of h with multiplicity $\geq -m_P$.
- If $m_P > 0$, *P* can be a pole of *h* with multiplicity $\leq m_P$.

Divisors and Riemann-Roch spaces

Smooth divisor *D*: finite formal sum $\sum_P m_P P$ of smooth points on *C*. Degree of a divisor: deg(*D*) = $\sum_P m_P$.

Riemann-Roch space L(D): set of rational functions h such that

- If $m_P < 0$, P has to be a zero of h with multiplicity $\geq -m_P$.
- If $m_P > 0$, P can be a pole of h with multiplicity $\leq m_P$.

Remember: zeros constrained by D_{-} and poles allowed by D_{+} .

Divisors and Riemann-Roch spaces

Smooth divisor *D*: finite formal sum $\sum_P m_P P$ of smooth points on *C*. Degree of a divisor: deg(*D*) = $\sum_P m_P$.

Riemann-Roch space L(D): set of rational functions h such that

- If $m_P < 0$, P has to be a zero of h with multiplicity $\geq -m_P$.
- If $m_P > 0$, P can be a pole of h with multiplicity $\leq m_P$.

Remember: zeros constrained by D_{-} and poles allowed by D_{+} .

Our problem:

Given input curve C and smooth divisor D, Compute a basis of the vector space L(D).

Geometric vs arithmetic methods

Geometric methods: Based on Brill-Noether theory.

Arithmetic methods: Ideals in function fields.

Geometric vs arithmetic methods

Geometric methods:

Based on Brill-Noether theory.

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi, Volcheck (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)

Arithmetic methods:

Ideals in function fields.

- Coates (1970)
- Davenport (1981)
- Hess's algorithm (2001)

Geometric vs arithmetic methods

Geometric methods:

Based on Brill-Noether theory.

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi, Volcheck (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)

Arithmetic methods:

Ideals in function fields.

- Coates (1970)
- Davenport (1981)
- Hess's algorithm (2001)

Today: geometric methods

Brill-Noether: belonging conditions for Riemann-Roch spaces. Conditions \rightsquigarrow linear systems (Le Gluher, Spaenlehauer, 2018).

Geometric algorithms (Brill-Noether theory)

Our work: conditions \rightsquigarrow belonging to a K[x]-module. Basis of this module through structured linear algebra (Neiger, 2016).

Results: subquadratic algorithms for nodal⁴ and ordinary⁵ curves.

Simon Abelard

⁴A., Couvreur, Lecerf. Proceedings of ISSAC 2020

⁵A., Couvreur, Lecerf. Preprint, 2021

A basis of L(D) through Brill-Noether theory

Effective divisors

 $D = \sum m_i P_i$ is positive or effective if for any $i, m_i \ge 0$. Can split $D = D_+ - D_-$ as a difference of two effective divisors. Denote $D \ge D'$ whenever D - D' is effective. A basis of L(D) through Brill-Noether theory

Effective divisors

 $D = \sum m_i P_i$ is positive or effective if for any $i, m_i \ge 0$. Can split $D = D_+ - D_-$ as a difference of two effective divisors. Denote $D \ge D'$ whenever D - D' is effective.

Principal divisor: $(h) = \sum_{P \in C} \operatorname{ord}_P(h)P$ (zeros-poles with multiplicity)

A basis of L(D) through Brill-Noether theory

Effective divisors

 $D = \sum m_i P_i$ is positive or effective if for any $i, m_i \ge 0$. Can split $D = D_+ - D_-$ as a difference of two effective divisors. Denote $D \ge D'$ whenever D - D' is effective.

Principal divisor: $(h) = \sum_{P \in C} \operatorname{ord}_P(h)P$ (zeros-poles with multiplicity)

A description for L(D) (Haché, Le Brigand-Risler)

Non-zero elements of L(D) are of the form G/H where:

- The common denominator H satisfies $(H) \ge D$.
- H must pass through all the singular points of C.
- G is of degree deg H and $(G) \ge (H) D$.

Sketch of the algorithm

Step 1 Find a denominator H.

Step 2 Compute (*H*).

Step 3 Compute (H) - D.

Step 4 Compute numerators. (Very similar to step 1)

Steps 2 and 3 are a combination of usual techniques. Let us focus on the interpolation problem of step 1.

Finding a denominator in practice

Conditions on *H*: passing through singularities and $(H) \ge D_+$. In primitive form, $(H) \ge D_+ \Leftrightarrow H(X, v_+(X)) = 0 \mod \chi_+(X)$. Passing through singularities: similar equation.

Finding a denominator in practice

Conditions on *H*: passing through singularities and $(H) \ge D_+$. In primitive form, $(H) \ge D_+ \Leftrightarrow H(X, v_+(X)) = 0 \mod \chi_+(X)$.

Passing through singularities: similar equation.

Set $d = \deg H$ and write $H = \sum_{i=1}^{d} h_i(X)Y^i$. Above conditions on H: the h_i 's are in a K[X]-module of rank d + 1.

Finding a denominator in practice

Conditions on *H*: passing through singularities and $(H) \ge D_+$. In primitive form, $(H) \ge D_+ \Leftrightarrow H(X, v_+(X)) = 0 \mod \chi_+(X)$. Passing through singularities: similar equation.

Set $d = \deg H$ and write $H = \sum_{i=1}^{d} h_i(X)Y^i$. Above conditions on H: the h_i 's are in a K[X]-module of rank d + 1.

Computing a solution basis (Neiger, 2016)

A basis of this K[X]-module costs $\widetilde{O}(d^{\omega-1} \operatorname{deg} \chi_+)$ field ops. **Problem:** d is unknown, we prove an a priori bound.

Overall complexity exponent: $(\omega + 1)/2$.

Beyond the nodal case

Smooth part: $(H) \ge D_+$ remains $H(X, v(X)) = 0 \mod \chi(X)$. **Singular part:** *H* passes through singularities with multiplicities.

⁵A., Couvreur, Lecerf. Preprint, 2021

Beyond the nodal case

Smooth part: $(H) \ge D_+$ remains $H(X, v(X)) = 0 \mod \chi(X)$. **Singular part:** *H* passes through singularities with multiplicities.

Problems:

- How to rephrase Noether's conditions? Multiplicities → valuation theory, local expansions.
- How to perform the interpolation step?
 Naive extension → too many equations, bad complexity.

⁵A., Couvreur, Lecerf. Preprint, 2021

Beyond the nodal case

Smooth part: $(H) \ge D_+$ remains $H(X, v(X)) = 0 \mod \chi(X)$. **Singular part:** *H* passes through singularities with multiplicities.

Problems:

- How to rephrase Noether's conditions? Multiplicities → valuation theory, local expansions.
- How to perform the interpolation step?
 Naive extension → too many equations, bad complexity.

Complexity bounds

- Ordinary case⁵ : same as nodal (exponent $(\omega + 1)/2$).
- General case: ongoing work, target exponent ω first.

⁵A., Couvreur, Lecerf. Preprint, 2021

Prospective

- Point-counting in genus 2 and 3:
 - New algorithms for bivariate resultants
 - Improve Gröbner-based approach (symmetry, further structure)
- Riemann-Roch spaces:
 - Implement fast algorithms through solution bases
 - Handle the non-ordinary case
- Develop a toolbox for efficient AG codes:
 - Algorithms for encoding/decoding
 - New choice of curves based on applications

Thank you for your attention!

Appendix: faster resultants in point-counting

Villard's algorithm for bivariate resultants

Genus	Usual resultants	Villard's algorithm	With $\omega = 2.8$
<i>g</i> = 2	$\widetilde{O}(\log^8 q)$	$\widetilde{O}((\log q)^{8-2/\omega})$	$\widetilde{O}((\log q)^{7.3})$
g = 2 RM	$\widetilde{O}(\log^5 q)$	$\widetilde{O}((\log q)^{5-1/\omega})^*$	$\widetilde{O}((\log q)^{4.6})^*$
g = 3	$\widetilde{O}(\log^{14} q)$	$\widetilde{O}((\log q)^{14-4/\omega})$	$\widetilde{O}((\log q)^{12.6})$
g = 3 RM	$\widetilde{O}(\log^6 q)$	$\widetilde{O}((\log q)^{6-4/(3\omega)})$	$\widetilde{O}((\log q)^{5.5})$

Using van der Hoeven and Lecerf's algorithm

Genus	Usual resultants	van der Hoeven - Lecerf
g = 2	$\widetilde{O}(\log^8 q)$	$\widetilde{O}((\log q)^6)$
g = 2 RM	$\widetilde{O}(\log^5 q)$	$\widetilde{O}((\log q)^4)^*$
g = 3	$\widetilde{O}(\log^{14} q)$	$\widetilde{O}((\log q)^{10})$
g = 3 RM	$\widetilde{O}(\log^6 q)$	$\widetilde{O}((\log q)^{2+8/3})$