Structured algorithms for algebraic curves

Simon Abelard
Laboratoire Cryptologie et Composants
Thales SIX GTS France

Two research axes

Point counting:

Cryptographic applications:

- Constructive: discrete log.
- Destructive: VDF (verifiable-delay functions)

Riemann-Roch spaces:

Applications:

- Symbolic integration
- Arithmetic in Jacobians
- Algebraic Geometry codes

Common Denominator:

- Algebraic curves
- Protection of information
- Computer Algebra
- Structured problems

Part I : hyperelliptic point counting

Input: hyperelliptic curve $y^{2}=f(x)$ over \mathbb{F}_{p}.
Problem: how many solutions of $y^{2}=f(x) \bmod p$?

$y^{2}=x^{3}-2 x+1$ over \mathbb{R}

$y^{2}=x^{3}-2 x+1$ over \mathbb{F}_{89}

Hyperelliptic point counting

Example: $y^{2}=x^{7}-7 x^{5}+14 x^{3}-7 x+42$ over $\mathbb{F}_{2^{64}-59}$. Parameters: p, degree of f denoted $2 g+1$ (g is the genus).

Hyperelliptic point counting

Example: $y^{2}=x^{7}-7 x^{5}+14 x^{3}-7 x+42$ over $\mathbb{F}_{2^{64}-59}$. Parameters: p, degree of f denoted $2 g+1$ (g is the genus).

Polynomial-time algorithms

Input size: $O(g \log p)$.
Algorithm polynomial in $g \log p ? \rightsquigarrow$ open problem.

Hyperelliptic point counting

Example: $y^{2}=x^{7}-7 x^{5}+14 x^{3}-7 x+42$ over $\mathbb{F}_{2^{64}-59}$. Parameters: p, degree of f denoted $2 g+1$ (g is the genus).

Polynomial-time algorithms

Input size: $O(g \log p)$.
Algorithm polynomial in $g \log p ? \rightsquigarrow$ open problem.

- p-adic approaches are polynomial in g.
(i.e. $\left.(p g)^{O(1)}\right)$
- ℓ-adic approaches are polynomial in $\log p$.

$$
\left(\text { i.e. }(\log p)^{e(g)}\right)
$$

Hyperelliptic point counting

Example: $y^{2}=x^{7}-7 x^{5}+14 x^{3}-7 x+42$ over $\mathbb{F}_{2^{64}-59}$. Parameters: p, degree of f denoted $2 g+1$ (g is the genus).

Polynomial-time algorithms

Input size: $O(g \log p)$.
Algorithm polynomial in $g \log p ? \rightsquigarrow$ open problem.

- p-adic approaches are polynomial in g. (i.e. $\left.(p g)^{O(1)}\right)$
- ℓ-adic approaches are polynomial in $\log p$.
(i.e. $\left.(\log p)^{e(g)}\right)$

Our contributions: large p, exponent of $\log p$ depends on g.

From curves to groups

$$
P+Q+R=0
$$

$$
P_{1}+P_{2}+Q_{1}+Q_{2}+R_{1}+R_{2}=0
$$

$$
\text { Curve of equation } Y^{2}=X^{5}-2 X^{4}-7 X^{3}+8 X^{2}+12 X
$$

$J=\operatorname{Jac}(\mathcal{C})$ is the Jacobian, its elements are formal sums of points.

From ℓ-adic methods to polynomial systems

Let $\mathcal{C}: y^{2}=f(x)$ be a hyperelliptic curve over \mathbb{F}_{q}. Let J be its Jacobian and g its genus. We want $N=\# J\left(\mathbb{F}_{q}\right)$.
(1) (Hasse-Weil) bounds on $N \Rightarrow$ compute $N \bmod \ell$
(2) ℓ-torsion $J[\ell]=\{D \in J \mid \ell D=0\} \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2 g}$
(3) Action of Frobenius $\pi:(x, y) \mapsto\left(x^{q}, y^{q}\right)$ on $J[\ell]$ yields $N \bmod \ell$

Algorithm a la Schoof
For sufficiently many primes ℓ
Describe I_{ℓ} the ideal of ℓ-torsion
Compute action of π on $J[\ell]$
Deduce $N \bmod \ell$
Recover N by CRT

From ℓ-adic methods to polynomial systems

Let $\mathcal{C}: y^{2}=f(x)$ be a hyperelliptic curve over \mathbb{F}_{q}. Let J be its Jacobian and g its genus. We want $N=\# J\left(\mathbb{F}_{q}\right)$.
(1) (Hasse-Weil) bounds on $N \Rightarrow$ compute $N \bmod \ell$
(2) ℓ-torsion $J[\ell]=\{D \in J \mid \ell D=0\} \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2 g}$
(3) Action of Frobenius $\pi:(x, y) \mapsto\left(x^{q}, y^{q}\right)$ on $J[\ell]$ yields $N \bmod \ell$

Algorithm a la Schoof
For sufficiently many primes ℓ
Describe I_{ℓ} the ideal of ℓ-torsion
Compute action of π on $J[\ell]$
Deduce $N \bmod \ell$
Recover N by CRT

From ℓ-adic methods to polynomial systems

Let $\mathcal{C}: y^{2}=f(x)$ be a hyperelliptic curve over \mathbb{F}_{q}.
Let J be its Jacobian and g its genus. We want $N=\# J\left(\mathbb{F}_{q}\right)$.
(1) (Hasse-Weil) bounds on $\mathrm{N} \Rightarrow$ compute $N \bmod \ell$
(2) ℓ-torsion $J[\ell]=\{D \in J \mid \ell D=0\} \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2 g}$
(3) Action of Frobenius $\pi:(x, y) \mapsto\left(x^{q}, y^{q}\right)$ on $J[\ell]$ yields $N \bmod \ell$

Algorithm a la Schoof
For sufficiently many primes ℓ
Describe I_{ℓ} the ideal of ℓ-torsion
Compute action of π on $J[\ell]$
Deduce $N \bmod \ell$
Recover N by CRT

From ℓ-adic methods to polynomial systems

 Let $\mathcal{C}: y^{2}=f(x)$ be a hyperelliptic curve over \mathbb{F}_{q}. Let J be its Jacobian and g its genus. We want $N=\# J\left(\mathbb{F}_{q}\right)$.(1) (Hasse-Weil) bounds on $\mathrm{N} \Rightarrow$ compute $N \bmod \ell$
(2) ℓ-torsion $J[\ell]=\{D \in J \mid \ell D=0\} \simeq(\mathbb{Z} / \ell \mathbb{Z})^{2 g}$
(3) Action of Frobenius $\pi:(x, y) \mapsto\left(x^{q}, y^{q}\right)$ on $J[\ell]$ yields $N \bmod \ell$

Algorithm a la Schoof

For sufficiently many primes ℓ
Describe I_{ℓ} the ideal of ℓ-torsion
Compute action of π on $J[\ell]$
Deduce $N \bmod \ell$
Recover N by CRT
Main tasks: find equations for I_{ℓ} (and bound their degree). Solve these equations (i.e. find a Gröbner basis for I_{ℓ}).

Contribution I, genus-3 curves

Asymptotic complexities

Genus	Complexity	Authors
$g=1$	$\tilde{O}\left(\log ^{4} p\right)$	Schoof, Elkies, Atkin (1990)
$g=2$	$\tilde{O}\left(\log ^{8} p\right)$	Gaudry, Schost (2000)
$g=2$, RM curves	$\tilde{O}\left(\log ^{5} p\right)$	Gaudry, Kohel, Smith (2011)
$g=3$	$\tilde{O}\left(\log ^{14} p\right)$	Our work
$g=3$, RM curves	$\tilde{O}\left(\log ^{6} p\right)$	Our work ${ }^{1}$

Practical experiment ${ }^{1}$

Curve $y^{2}=x^{7}-7 x^{5}+14 x^{3}-7 x+42$ over $\mathbb{F}_{2^{64}-59}$.
Record computation : 64-bit p, Jacobian has order $\sim 2^{192}$.
${ }^{1}$ A., Gaudry, Spaenlehauer. Proceedings of ANTS 2018

Applications: Verifiable Delay Functions (VDF)

Function f such that:

- Evaluation $x \mapsto f(x)$ slow and sequential (hard to parallelize).
- Verifying that $y=f(x)$ is fast.

Use of VDFs: randomness, power-saving blockchains.
Construction: $f(\gamma)=\gamma^{2^{T}}, \gamma$ in a group of unknown order.

Applications: Verifiable Delay Functions (VDF)

Function f such that:

- Evaluation $x \mapsto f(x)$ slow and sequential (hard to parallelize).
- Verifying that $y=f(x)$ is fast.

Use of VDFs: randomness, power-saving blockchains.
Construction: $f(\gamma)=\gamma^{2^{T}}, \gamma$ in a group of unknown order.
Use case: the group is the Jacobian of a curve.
Point counting \rightsquigarrow order of the Jacobian, must be infeasible. Improvement on point counting \rightsquigarrow threatens security.

Applications: Verifiable Delay Functions (VDF)

Function f such that:

- Evaluation $x \mapsto f(x)$ slow and sequential (hard to parallelize).
- Verifying that $y=f(x)$ is fast.

Use of VDFs: randomness, power-saving blockchains.
Construction: $f(\gamma)=\gamma^{2^{T}}, \gamma$ in a group of unknown order.
Use case: the group is the Jacobian of a curve.
Point counting \rightsquigarrow order of the Jacobian, must be infeasible. Improvement on point counting \rightsquigarrow threatens security.

Impact of our work:

- Choosing safe parameters (p large enough)
- Avoid certain weaker curves

Point-counting in genus 3

Remember: our problem boils down to a polynomial system.

Point-counting in genus 3

Remember: our problem boils down to a polynomial system.

In theory:

- 6 equations of degree $O\left(\ell^{2}\right)$
- Solved using trivariate resultants (good when few variables, good complexity results)
- Final complexity:
$\widetilde{O}\left(\log ^{14} q\right)$

Point-counting in genus 3

Remember: our problem boils down to a polynomial system.

In theory:

- 6 equations of degree $O\left(\ell^{2}\right)$
- Solved using trivariate resultants (good when few variables, good complexity results)
- Final complexity:
$\widetilde{O}\left(\log ^{14} q\right)$

In practice for $\ell=3$:

- 5 equations and variables degrees ≤ 55
- Solved using Gröbner bases (F4 in Magma): apparently nice structure but no proven complexity bounds
- Runs in 2 weeks using 140 GB of RAM
- $\ell=5$ is out of reach in practice

Point-counting in genus 3

Remember: our problem boils down to a polynomial system.

In theory:

- 6 equations of degree $O\left(\ell^{2}\right)$
- Solved using trivariate resultants (good when few variables, good complexity results)
- Final complexity: $\widetilde{O}\left(\log ^{14} q\right)$

In practice for $\ell=3$:

- 5 equations and variables degrees ≤ 55
- Solved using Gröbner bases (F4 in Magma): apparently nice structure but no proven complexity bounds
- Runs in 2 weeks using 140 GB of RAM
- $\ell=5$ is out of reach in practice

Culprit: size of ℓ-torsion (ℓ^{6} in genus 3).
\Rightarrow Look for more favorable curves.

Tuning Schoof's algorithm using RM

An RM family (Mestre'91,Tautz-Top-Verberkmoes' 91)
Family $\mathcal{C}_{t}: y^{2}=x^{7}-7 x^{5}+14 x^{3}-7 x+t$ with $t \neq \pm 2$.
\longrightarrow hyperelliptic curves of genus 3 .
Set η_{7} root of $X^{3}+X^{2}-2 X-1, \mathbb{Z}\left[\eta_{7}\right] \subset \operatorname{End}\left(\operatorname{Jac}\left(\mathcal{C}_{t}\right)\right)$.

Tuning Schoof's algorithm using RM

An RM family (Mestre'91,Tautz-Top-Verberkmoes'91)
Family $\mathcal{C}_{t}: y^{2}=x^{7}-7 x^{5}+14 x^{3}-7 x+t$ with $t \neq \pm 2$.
\longrightarrow hyperelliptic curves of genus 3 .
Set η_{7} root of $X^{3}+X^{2}-2 X-1, \mathbb{Z}\left[\eta_{7}\right] \subset \operatorname{End}\left(\operatorname{Jac}\left(\mathcal{C}_{t}\right)\right)$.
Example: $(13)=\left(2-\eta_{7}-2 \eta_{7}^{2}\right)\left(-2+2 \eta_{7}+\eta_{7}^{2}\right)\left(3+\eta_{7}-\eta_{7}^{2}\right)$.
The 13 -torsion is direct sum of three kernels of endomorphisms.
We model these kernels instead $\rightsquigarrow 3$ systems with:

- 5 variables (like $\ell=3$ before)
- 5 equations of degrees ≤ 52 (smaller than case $\ell=3$)

As before, use Gröbner bases in practice (3×3 days and 41 GB).

Tuning Schoof's algorithm using RM

An RM family (Mestre'91,Tautz-Top-Verberkmoes'91)
Family $\mathcal{C}_{t}: y^{2}=x^{7}-7 x^{5}+14 x^{3}-7 x+t$ with $t \neq \pm 2$.
\longrightarrow hyperelliptic curves of genus 3 .
Set η_{7} root of $X^{3}+X^{2}-2 X-1, \mathbb{Z}\left[\eta_{7}\right] \subset \operatorname{End}\left(\operatorname{Jac}\left(\mathcal{C}_{t}\right)\right)$.
Example: $(13)=\left(2-\eta_{7}-2 \eta_{7}^{2}\right)\left(-2+2 \eta_{7}+\eta_{7}^{2}\right)\left(3+\eta_{7}-\eta_{7}^{2}\right)$.
The 13 -torsion is direct sum of three kernels of endomorphisms.
We model these kernels instead $\rightsquigarrow 3$ systems with:

- 5 variables (like $\ell=3$ before)
- 5 equations of degrees ≤ 52 (smaller than case $\ell=3$)

As before, use Gröbner bases in practice (3×3 days and 41 GB).
In theory: 3 systems but degrees in $O\left(\ell^{2 / 3}\right)$ instead of $O\left(\ell^{2}\right)$. Final complexity result: $\widetilde{O}\left((\log q)^{6}\right)$ for genus-3 RM hyp. curves.

A practical example

$\mathcal{C}_{42}: y^{2}=x^{7}-7 x^{5}+14 x^{3}-7 x+42$ over \mathbb{F}_{p} with $p=2^{64}-59$.

$\bmod \ell^{k}$	$\#$ var	degree bounds	time	memory
2	-	-	-	-
$4\left(\right.$ inert $\left.^{2}\right)$	6	15	1 min	negl.
$3($ inert $)$	5	55	14 days	140 GB
$13=\mathfrak{p}_{1} \mathfrak{p}_{2} \mathfrak{p}_{3}$	5	52	3×3 days	41 GB

A practical example

$\mathcal{C}_{42}: y^{2}=x^{7}-7 x^{5}+14 x^{3}-7 x+42$ over \mathbb{F}_{p} with $p=2^{64}-59$.

$\bmod \ell^{k}$	$\#$ var	degree bounds	time	memory
2	-	-	-	-
$4\left(\right.$ inert $\left.^{2}\right)$	6	15	1 min	negl.
$3($ inert $)$	5	55	14 days	140 GB
$13=\mathfrak{p}_{1} \mathfrak{p}_{2} \mathfrak{p}_{3}$	5	52	3×3 days	41 GB

Finishing the computation

Like in genus 2, end with exponential collision search.
[Matsuo-Chao-Tsujii'02,Gaudry-Schost'04,Galbraith-Ruprai'09].
Modular info saves factor $156^{3 / 2} \simeq 1950$.
Cost: 105 CPU-days done in a few hours.

Contribution II, curves of arbitrary genus

 With ℓ-adic algorithms : complexity in $c_{g}(\log p)^{e(g)}$.

Genus	$g=1$	$g=2$	$g=3$
Complexity	$\widetilde{O}\left(\log ^{4} p\right)$	$\widetilde{O}\left(\log ^{8} p\right)$	$\widetilde{O}\left(\log ^{14} p\right)$

Contribution II, curves of arbitrary genus

Behavior of the exponent when g grows

Adleman-Huang (2001): $e(g) \in O\left(g^{2} \log g\right)$.
${ }^{2}$ A., Gaudry, Spaenlehauer. Foundations of Comput. Math., 2019
${ }^{3}$ A. Journal of Complexity, 2020

Contribution II, curves of arbitrary genus

Behavior of the exponent when g grows

Adleman-Huang (2001): $e(g) \in O\left(g^{2} \log g\right)$.

Our work:

- Linear bound for exponent ${ }^{2}$.
- Constant exponent in the RM-case ${ }^{3}$.
${ }^{2}$ A., Gaudry, Spaenlehauer. Foundations of Comput. Math., 2019
${ }^{3}$ A. Journal of Complexity, 2020

Contribution II, curves of arbitrary genus

Behavior of the exponent when g grows

Adleman-Huang (2001): $e(g) \in O\left(g^{2} \log g\right)$.

Our work:

- Linear bound for exponent ${ }^{2}$.
- Constant exponent in the RM-case ${ }^{3}$.

Applications:

- Algorithmic questions (deterministic polynomial factorization).
- Program equivalence (Barthe, Jacomme, Kremer, 2020).
${ }^{2}$ A., Gaudry, Spaenlehauer. Foundations of Comput. Math., 2019
${ }^{3}$ A. Journal of Complexity, 2020

Main ingredient: multihomogeneous structure

Different strategy: describe I_{ℓ} with g^{2} equations and variables.

Main ingredient: multihomogeneous structure

Different strategy: describe I_{ℓ} with g^{2} equations and variables.

$O\left(g^{2}\right)$ variables
$O\left(g^{2}\right)$ equations
degree in $O_{g}(1)$

Main ingredient: multihomogeneous structure

Different strategy: describe I_{ℓ} with g^{2} equations and variables.
g variables
$O\left(g^{2}\right)$ equations degree in $O_{g}\left(\ell^{3}\right)$
$O\left(g^{2}\right)$ variables
$O\left(g^{2}\right)$ equations
degree in $O_{g}(1)$

Geometric resolution
(Giusti-Lecerf-Salvy'01, Cafure-Matera'06)
Assume f_{1}, \cdots, f_{n} have degrees $\leq d$ and form a reduced regular sequence, and let $\delta=\max _{i} \operatorname{deg}\left\langle f_{1}, \ldots, f_{i}\right\rangle$. There is an algorithm computing a geometric resolution in time polynomial in δ, d, n.

Main ingredient: multihomogeneous structure

Different strategy: describe I_{ℓ} with g^{2} equations and variables.
g variables
$O\left(g^{2}\right)$ equations degree in $O_{g}\left(\ell^{3}\right)$
$O\left(g^{2}\right)$ variables
$O\left(g^{2}\right)$ equations degree in $O_{g}(1)$

Geometric resolution
(Giusti-Lecerf-Salvy'01, Cafure-Matera'06)
Assume f_{1}, \cdots, f_{n} have degrees $\leq d$ and form a reduced regular sequence, and let $\delta=\max _{i} \operatorname{deg}\left\langle f_{1}, \ldots, f_{i}\right\rangle$. There is an algorithm computing a geometric resolution in time polynomial in δ, d, n.

With $\delta=O_{g}\left(\ell^{3 g}\right)$ bounded by multihomogeneous Bézout bound. Both $d=O_{g}\left(\ell^{3}\right)$ and $n=O_{g}(1)$ are harmless for our bound.

Part II: Riemann-Roch spaces

Problem: find all the $\frac{G(X, Y)}{H(X, Y)}$ such that

- Z must be a zero of G,
- the P_{i} can be zeroes of H,
- G / H has no other pole.

Applications: arithmetic in Jacobians, AG codes, etc.

A toy example

Set $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1], Z=[1: 1]$ and $D=P-Z$.
Previous slide: $\frac{X-1}{X}$ is a solution (one pole in P and one zero in Z). Riemann-Roch theorem: $\frac{x-1}{x}$ generates the solution space.

A toy example

Set $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1], Z=[1: 1]$ and $D=P-Z$.
Previous slide: $\frac{x-1}{x}$ is a solution (one pole in P and one zero in Z).
Riemann-Roch theorem: $\frac{x-1}{x}$ generates the solution space.

A toy example

Set $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1], Z=[1: 1]$ and $D=P-Z$.
Previous slide: $\frac{x-1}{X}$ is a solution (one pole in P and one zero in Z).
Riemann-Roch theorem: $\frac{x-1}{x}$ generates the solution space.

A toy example

Set $\mathcal{C}=\mathbb{P}^{1}, P=[0: 1], Z=[1: 1]$ and $D=P-Z$.
Previous slide: $\frac{x-1}{x}$ is a solution (one pole in P and one zero in Z).
Riemann-Roch theorem: $\frac{x-1}{x}$ generates the solution space.

Our strategy

Denominator H passes through P. This means $H(X, Y) \bmod X=0$.
Numerators G pass through Z. It means $G(X, Y)=0 \bmod (X-1)$.
We recover the solution $\frac{X-1}{X}$.

Divisors and Riemann-Roch spaces

Smooth divisor D : finite formal sum $\sum_{P} m_{P} P$ of smooth points on \mathcal{C}. Degree of a divisor: $\operatorname{deg}(D)=\sum_{P} m_{P}$.

Riemann-Roch space $L(D)$: set of rational functions h such that

- If $m_{P}<0, P$ has to be a zero of h with multiplicity $\geq-m_{P}$.
- If $m_{P}>0, P$ can be a pole of h with multiplicity $\leq m_{P}$.

Divisors and Riemann-Roch spaces

Smooth divisor D : finite formal sum $\sum_{P} m_{P} P$ of smooth points on \mathcal{C}. Degree of a divisor: $\operatorname{deg}(D)=\sum_{P} m_{P}$.
Riemann-Roch space $L(D)$: set of rational functions h such that

- If $m_{P}<0, P$ has to be a zero of h with multiplicity $\geq-m_{P}$.
- If $m_{P}>0, P$ can be a pole of h with multiplicity $\leq m_{P}$.

Remember: zeros constrained by D_{-}and poles allowed by D_{+}.

Divisors and Riemann-Roch spaces

Smooth divisor D : finite formal sum $\sum_{P} m_{P} P$ of smooth points on \mathcal{C}.
Degree of a divisor: $\operatorname{deg}(D)=\sum_{p} m_{P}$.
Riemann-Roch space $L(D)$: set of rational functions h such that

- If $m_{P}<0, P$ has to be a zero of h with multiplicity $\geq-m_{P}$.
- If $m_{P}>0, P$ can be a pole of h with multiplicity $\leq m_{P}$.

Remember: zeros constrained by D_{-}and poles allowed by D_{+}.

Our problem:

Given input curve \mathcal{C} and smooth divisor D, Compute a basis of the vector space $L(D)$.

Geometric vs arithmetic methods

Geometric methods:
Based on Brill-Noether theory.

Arithmetic methods: Ideals in function fields.

Geometric vs arithmetic methods

Geometric methods:
Based on Brill-Noether theory.

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi, Volcheck (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)

Arithmetic methods: Ideals in function fields.

- Coates (1970)
- Davenport (1981)
- Hess's algorithm (2001)

Geometric vs arithmetic methods

Geometric methods:
Based on Brill-Noether theory.

- Goppa, Le Brigand-Risler (80's)
- Huang-lerardi, Volcheck (90's)
- Khuri-Makdisi (2007)
- Le Gluher-Spaenlehauer (2018)

Arithmetic methods:

Ideals in function fields.

- Coates (1970)
- Davenport (1981)
- Hess's algorithm (2001)

Today: geometric methods

Brill-Noether: belonging conditions for Riemann-Roch spaces.
Conditions \rightsquigarrow linear systems (Le Gluher, Spaenlehauer, 2018).

Geometric algorithms (Brill-Noether theory)

Nodal curve

Ordinary curve

Non-ordinary curve

Our work: conditions \rightsquigarrow belonging to a $K[x]$-module. Basis of this module through structured linear algebra (Neiger, 2016). Results: subquadratic algorithms for nodal ${ }^{4}$ and ordinary ${ }^{5}$ curves.
${ }^{4}$ A., Couvreur, Lecerf. Proceedings of ISSAC 2020
${ }^{5}$ A., Couvreur, Lecerf. Preprint, 2021

A basis of $L(D)$ through Brill-Noether theory

Effective divisors

$D=\sum m_{i} P_{i}$ is positive or effective if for any $i, m_{i} \geq 0$.
Can split $D=D_{+}-D_{-}$as a difference of two effective divisors. Denote $D \geq D^{\prime}$ whenever $D-D^{\prime}$ is effective.

A basis of $L(D)$ through Brill-Noether theory

Effective divisors

$D=\sum m_{i} P_{i}$ is positive or effective if for any $i, m_{i} \geq 0$.
Can split $D=D_{+}-D_{-}$as a difference of two effective divisors. Denote $D \geq D^{\prime}$ whenever $D-D^{\prime}$ is effective.

Principal divisor: $(h)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(h) P$ (zeros-poles with multiplicity)

A basis of $L(D)$ through Brill-Noether theory

Effective divisors

$D=\sum m_{i} P_{i}$ is positive or effective if for any $i, m_{i} \geq 0$.
Can split $D=D_{+}-D_{-}$as a difference of two effective divisors.
Denote $D \geq D^{\prime}$ whenever $D-D^{\prime}$ is effective.
Principal divisor: $(h)=\sum_{P \in \mathcal{C}} \operatorname{ord}_{P}(h) P$ (zeros-poles with multiplicity)
A description for $L(D)$ (Haché, Le Brigand-Risler)
Non-zero elements of $L(D)$ are of the form G / H where:

- The common denominator H satisfies $(H) \geq D$.
- H must pass through all the singular points of \mathcal{C}.
- G is of degree $\operatorname{deg} H$ and $(G) \geq(H)-D$.

Sketch of the algorithm

Step 1 Find a denominator H.
Step 2 Compute (H).
Step 3 Compute $(H)-D$.
Step 4 Compute numerators.
(Very similar to step 1)

Steps 2 and 3 are a combination of usual techniques. Let us focus on the interpolation problem of step 1.

Finding a denominator in practice

Conditions on H : passing through singularities and $(H) \geq D_{+}$. In primitive form, $(H) \geq D_{+} \Leftrightarrow H\left(X, v_{+}(X)\right)=0 \bmod \chi_{+}(X)$. Passing through singularities: similar equation.

Finding a denominator in practice

Conditions on H : passing through singularities and $(H) \geq D_{+}$.
In primitive form, $(H) \geq D_{+} \Leftrightarrow H\left(X, v_{+}(X)\right)=0 \bmod \chi_{+}(X)$.
Passing through singularities: similar equation.
Set $d=\operatorname{deg} H$ and write $H=\sum_{i=1}^{d} h_{i}(X) Y^{i}$. Above conditions on H : the h_{i} 's are in a $K[X]$-module of rank $d+1$.

Finding a denominator in practice

Conditions on H : passing through singularities and $(H) \geq D_{+}$. In primitive form, $(H) \geq D_{+} \Leftrightarrow H\left(X, v_{+}(X)\right)=0 \bmod \chi_{+}(X)$. Passing through singularities: similar equation.
Set $d=\operatorname{deg} H$ and write $H=\sum_{i=1}^{d} h_{i}(X) Y^{i}$.
Above conditions on H : the h_{i} 's are in a $K[X]$-module of rank $d+1$.

Computing a solution basis (Neiger, 2016)

A basis of this $K[X]$-module costs $\tilde{O}\left(d^{\omega-1} \operatorname{deg} \chi_{+}\right)$field ops.
Problem: d is unknown, we prove an a priori bound.
Overall complexity exponent: $(\omega+1) / 2$.

Beyond the nodal case

Smooth part: $(H) \geq D_{+}$remains $H(X, v(X))=0 \bmod \chi(X)$. Singular part: H passes through singularities with multiplicities.

Beyond the nodal case

Smooth part: $(H) \geq D_{+}$remains $H(X, v(X))=0 \bmod \chi(X)$. Singular part: H passes through singularities with multiplicities.

Problems:

- How to rephrase Noether's conditions? Multiplicities \rightsquigarrow valuation theory, local expansions.
- How to perform the interpolation step?

Naive extension \rightsquigarrow too many equations, bad complexity.
${ }^{5}$ A., Couvreur, Lecerf. Preprint, 2021

Beyond the nodal case

Smooth part: $(H) \geq D_{+}$remains $H(X, v(X))=0 \bmod \chi(X)$. Singular part: H passes through singularities with multiplicities.

Problems:

- How to rephrase Noether's conditions? Multiplicities \rightsquigarrow valuation theory, local expansions.
- How to perform the interpolation step?

Naive extension \rightsquigarrow too many equations, bad complexity.

Complexity bounds

- Ordinary case ${ }^{5}$: same as nodal (exponent $\left.(\omega+1) / 2\right)$.
- General case: ongoing work, target exponent ω first.

[^0]
Prospective

- Point-counting in genus 2 and 3:
- New algorithms for bivariate resultants
- Improve Gröbner-based approach (symmetry, further structure)
- Riemann-Roch spaces:
- Implement fast algorithms through solution bases
- Handle the non-ordinary case
- Develop a toolbox for efficient AG codes:
- Algorithms for encoding/decoding
- New choice of curves based on applications

Thank you for your attention!

Appendix: faster resultants in point-counting

Villard's algorithm for bivariate resultants

$$
\begin{array}{c|l|l|l}
\text { Genus } & \text { Usual resultants } & \text { Villard's algorithm } & \text { With } \omega=2.8 \\
g=2 & \widetilde{O}\left(\log ^{8} q\right) & \tilde{O}\left((\log q)^{8-2 / \omega}\right) & \tilde{O}\left((\log q)^{7.3}\right) \\
g=2 \text { RM } & \widetilde{O}\left(\log ^{5} q\right) & \widetilde{O}\left((\log q)^{5-1 / \omega}\right)^{*} & \tilde{O}\left((\log q)^{4.6}\right)^{*} \\
g=3 & \widetilde{O}\left(\log ^{14} q\right) & \widetilde{O}\left((\log q)^{14-4 / \omega}\right) & \tilde{O}\left((\log q)^{12.6}\right) \\
g=3 \text { RM } & \widetilde{O}\left(\log ^{6} q\right) & \widetilde{O}\left((\log q)^{6-4 /(3 \omega)}\right) & \tilde{O}\left((\log q)^{5.5}\right)
\end{array}
$$

Using van der Hoeven and Lecerf's algorithm

$$
\begin{array}{c|l|l}
\text { Genus } & \text { Usual resultants } & \text { van der Hoeven - Lecerf } \\
g=2 & \widetilde{O}\left(\log ^{8} q\right) & \tilde{O}\left((\log q)^{6}\right) \\
g=2 \mathrm{RM} & \tilde{O}\left(\log ^{5} q\right) & \tilde{O}\left((\log q)^{4}\right)^{*} \\
g=3 & \tilde{O}\left(\log ^{14} q\right) & \tilde{O}\left((\log q)^{10}\right) \\
g=3 \mathrm{RM} & \tilde{O}\left(\log ^{6} q\right) & \tilde{O}\left((\log q)^{2+8 / 3}\right)
\end{array}
$$

[^0]: ${ }^{5}$ A., Couvreur, Lecerf. Preprint, 2021

