Gröbner bases for Tate algebras

Xavier Caruso¹ Tristan Vaccon² Thibaut Verron³

1. Université de Bordeaux, CNRS, Inria, Bordeaux, France

2. Université de Limoges, CNRS, XLIM, Limoges, France

3. Johannes Kepler University, Institute for Algebra, Linz, Austria

PolSys/SpecFun joint seminar, 12 February 2021

Algebraic geometry and analytic geometry

Algebraic geometry and analytic geometry ... over p-adics?

Rigid geometry and Tate series

Needed for algorithmic rigid geometry:

- Basic arithmetic for Tate series
- Ideal operations for Tate series
- "Cut and patch" rigid varieties

Rigid geometry and Tate series

Needed for algorithmic rigid geometry:

- $\hfill\square$ Basic arithmetic for Tate series
- □ Ideal operations for Tate series
- □ "Cut and patch" rigid varieties

Valued fields and valuation rings: summary of basic definitions

Valuation: function val : $k \to \mathbb{Z} \cup \{\infty\}$ with: $\blacktriangleright \ \mathrm{val}(a) = \infty \iff a = 0$ $a \cdot b = ab$ \triangleright val(ab) = val(a) + val(b) a+b=a+b \blacktriangleright val $(a + b) \ge \min(val(a), val(b))$ Examples: 1 π^{0} $a = a_{3}\pi^{3} + a_{4}\pi^{4} + \dots$ $b = b_{-3}\pi^{-3} + b_{-2}\pi^{-2} + \dots$

Field	$K = \operatorname{Frac}(K^{\circ}) = K^{\circ}[1/\pi]$	\mathbb{Q}_p	k((X))
Integer ring	$K^\circ = \{x : \operatorname{val}(x) \ge 0\}$	\mathbb{Z}_p	k[[X]]
Uniformizer	π	<i>p</i> prime	X
Residue field	$K^{\circ}/\langle\pi angle$	\mathbb{F}_{p}	k

Field	$K = \operatorname{Frac}(K^{\circ}) = K^{\circ}[1/\pi]$	\mathbb{Q}_p	k((X))
Integer ring	$K^\circ = \{x : \operatorname{val}(x) \ge 0\}$	\mathbb{Z}_p	k[[X]]
Uniformizer	π	<i>p</i> prime	X
Residue field	$K^{\circ}/\langle \pi \rangle$	\mathbb{F}_{p}	k

- Metric and topology defined by "*a* is small" \iff "val(*a*) is large"
- All those examples are complete for that topology
- ► In a complete valuation ring, a series is convergent iff its general term goes to 0:

Field	$K = \operatorname{Frac}(K^{\circ}) = K^{\circ}[1/\pi]$	\mathbb{Q}_p	k((X))
Integer ring	$K^\circ = \{x : \operatorname{val}(x) \ge 0\}$	\mathbb{Z}_p	k[[X]]
Uniformizer	π	<i>p</i> prime	X
Residue field	$K^{\circ}/\langle \pi \rangle$	\mathbb{F}_{p}	k

- All those examples are complete for that topology
- ► In a complete valuation ring, a series is convergent iff its general term goes to 0:

Field	$K = \operatorname{Frac}(K^{\circ}) = K^{\circ}[1/\pi]$	\mathbb{Q}_p	k((X))
Integer ring	$K^\circ = \{x : \operatorname{val}(x) \ge 0\}$	\mathbb{Z}_p	k[[X]]
Uniformizer	π	<i>p</i> prime	X
Residue field	$K^{\circ}/\langle \pi \rangle$	\mathbb{F}_{p}	k

- All those examples are complete for that topology
- ▶ In a complete valuation ring, a series is convergent iff its general term goes to 0:

Field	$K = \operatorname{Frac}(K^{\circ}) = K^{\circ}[1/\pi]$	\mathbb{Q}_p	k((X))
Integer ring	$K^\circ = \{x : \operatorname{val}(x) \ge 0\}$	\mathbb{Z}_p	k[[X]]
Uniformizer	π	<i>p</i> prime	X
Residue field	$K^{\circ}/\langle \pi \rangle$	\mathbb{F}_{p}	k

- All those examples are complete for that topology
- ▶ In a complete valuation ring, a series is convergent iff its general term goes to 0:

Field	$K = \operatorname{Frac}(K^{\circ}) = K^{\circ}[1/\pi]$	\mathbb{Q}_p	k((X))
Integer ring	$K^\circ = \{x : \operatorname{val}(x) \ge 0\}$	\mathbb{Z}_p	k[[X]]
Uniformizer	π	<i>p</i> prime	X
Residue field	$K^{\circ}/\langle \pi \rangle$	\mathbb{F}_{p}	k

- All those examples are complete for that topology
- ▶ In a complete valuation ring, a series is convergent iff its general term goes to 0:

Tate Series

 $\mathbf{X}=X_1,\ldots,X_n$

Definition

K{X}° = ring of series in X with coefficients in K° converging for all x ∈ K°
 = ring of power series whose general coefficients tend to 0

Examples

Polynomials (finite sums are convergent)

• $F \in \mathbb{C}[[Y]][[X]]$ is a Tate series $\iff F \in \mathbb{C}[X][[Y]]$

1. Introduction and definitions

2. Gröbner bases

3. FGLM algorithm for zero-dimensional Tate ideals

1. Introduction and definitions

2. Gröbner bases

3. FGLM algorithm for zero-dimensional Tate ideals

Gröbner bases in finite precision

Gröbner bases:

- Multi-purpose tool for ideal arithmetic in polynomial algebras
- Membership testing, elimination, intersection...
- Uses successive (terminating) reductions

Main challenges with finite precision:

- Propagation of rounding errors
- Impossibility of zero-test

Gröbner bases in finite precision

Gröbner bases:

- Multi-purpose tool for ideal arithmetic in polynomial algebras
- Membership testing, elimination, intersection...
- Uses successive (terminating) reductions

Main challenges with finite precision:

- Propagation of rounding errors
 - A priori not a problem in a valuation ring
- Impossibility of zero-test
 - Consider larger coefficients first
- Non-terminating reductions

Gröbner bases in finite precision

Gröbner bases:

- Multi-purpose tool for ideal arithmetic in polynomial algebras
- Membership testing, elimination, intersection...
- Uses successive (terminating) reductions

Main challenges with finite precision:

- Propagation of rounding errors
 - A priori not a problem in a valuation ring
- Impossibility of zero-test
 - Consider larger coefficients first
- Non-terminating reductions
 - ► Theory: replace terminating with convergent everywhere
 - Practice: we always work with bounded precision

Term ordering for Tate algebras

- Starting from a usual monomial ordering $1 <_m \mathbf{X}^{i_1} <_m \mathbf{X}^{i_2} <_m \dots$
- We define a term ordering putting more weight on large coefficients

Term ordering for Tate algebras

- Starting from a usual monomial ordering $1 <_m \mathbf{X}^{\mathbf{i}_1} <_m \mathbf{X}^{\mathbf{i}_2} <_m \dots$
- We define a term ordering putting more weight on large coefficients

- It has infinite descending chains, but they converge to zero
- Tate series always have a leading term

Term ordering for Tate algebras

- Starting from a usual monomial ordering $1 <_m \mathbf{X}^{\mathbf{i}_1} <_m \mathbf{X}^{\mathbf{i}_2} <_m \dots$
- We define a term ordering putting more weight on large coefficients

It has infinite descending chains, but they converge to zero

 $f \mapsto \overline{f}$

- Tate series always have a leading term
- Isomorphism $K\{\mathbf{X}\}^{\circ}/\langle \pi \rangle \simeq \mathbb{F}[\mathbf{X}]$

compatible with the term order

$$f = \overline{a_2 XY + a_1 X} + a_0 \cdot 1 + a_3 X^2 Y^2 + \dots$$

Gröbner bases for Tate series

Standard definition once the term order is defined:

G is a Gröbner basis of *I* \iff for all $f \in I$, there is $g \in G$ s.t. LT(g) divides LT(f)

- Standard equivalent characterizations:
 - 1. G is a Gröbner basis of I
 - 2. for all $f \in I$, f is reducible modulo G
 - 3. for all $f \in I$, f reduces to zero modulo G

 \exists sequence of reductions converging to 0

Gröbner bases for Tate series

Standard definition once the term order is defined:

G is a Gröbner basis of $I \iff$ for all $f \in I$, there is $g \in G$ s.t. LT(g) divides LT(f)

- Standard equivalent characterizations and a surprising one:
 - 1. G is a Gröbner basis of I
 - 2. for all $f \in I$, f is reducible modulo G
 - 3. for all $f \in I$, f reduces to zero modulo G

If *I* is saturated:

 $\pi f \in I \implies f \in I$

 \exists sequence of reductions converging to 0

4. \overline{G} is a Gröbner basis of \overline{I} in the sense of $\mathbb{F}[\mathbf{X}]$

1. Start with $f \in I$, we can assume that f has valuation 0

I is saturated

1. Start with $f \in I$, we can assume that f has valuation 0

I is saturated

3. $\overline{f} \in \overline{I}$ so we have a sequence of reductions

 $\overline{\overline{f}} - q_1 \overline{g_1} - q_2 \overline{g_2} - \dots - q_r \overline{g_r} = 0$

1. Start with $f \in I$, we can assume that f has valuation 0

3. $\overline{f} \in \overline{I}$ so we have a sequence of reductions

 $\frac{\bullet}{\overline{f}} - q_1 \overline{g_1} - q_2 \overline{g_2} - \dots - q_r \overline{g_r} = 0$

4. So we have a sequence of reductions

1. Start with $f \in I$, we can assume that f has valuation 0

3. $\overline{f} \in \overline{I}$ so we have a sequence of reductions

 $\overline{\overline{f}} - q_1 \overline{g_1} - q_2 \overline{g_2} - \dots - q_r \overline{g_r} = 0$

4. So we have a sequence of reductions

$$f - \sum_{i=1}^{r} q_i g_i = f - \sum_{i=1}^{r} q_i \overline{g_i} + \sum_{i=1}^{r} q_i \left(\overline{g_i} - g_i \right)$$

I is saturated

1. Start with $f \in I$, we can assume that f has valuation 0

3. $\overline{f} \in \overline{I}$ so we have a sequence of reductions

 $\overline{\overline{f}} - q_1 \overline{g_1} - q_2 \overline{g_2} - \dots - q_r \overline{g_r} = 0$

4. So we have a sequence of reductions

$$f - \sum_{i=1}^{r} q_i g_i = f - \sum_{i=1}^{r} q_i \overline{g_i} + \sum_{i=1}^{r} q_i \left(\overline{g_i} - g_i\right)$$
$$= f - \overline{f} + \sum_{i=1}^{r} q_i \left(\overline{g_i} - g_i\right)$$

I is saturated

1. Start with $f \in I$, we can assume that f has valuation 0

2. Separate $f = \overline{f} + f - \overline{f}$

3. $\overline{f} \in \overline{I}$ so we have a sequence of reductions

 $\overline{\overline{f}} - q_1 \overline{g_1} - q_2 \overline{g_2} - \dots - q_r \overline{g_r} = 0$

4. So we have a sequence of reductions

$$f - \sum_{i=1}^{r} q_i g_i = f - \sum_{i=1}^{r} q_i \overline{g_i} + \sum_{i=1}^{r} q_i \left(\overline{g_i} - g_i\right)$$
$$= f - \overline{f} + \sum_{i=1}^{r} q_i \left(\overline{g_i} - g_i\right) = \mathbf{I} = \pi \cdot f_1$$

I is saturated

1. Start with $f \in I$, we can assume that f has valuation 0 2. Separate $f = \overline{f} + f - \overline{f}$ 3. $\overline{f} \in \overline{I}$ so we have a sequence of reductions $\frac{\overline{f}}{\overline{f}} - q_1 \overline{g_1} - q_2 \overline{g_2} - \dots - q_r \overline{g_r} = 0$ 4. So we have a sequence of reductions $f - \sum_{i=1}^{r} q_i g_i = f - \sum_{i=1}^{r} q_i \overline{g_i} + \sum_{i=1}^{r} q_i \left(\overline{g_i} - g_i \right)$ $= f - \overline{f} + \sum_{i=1}^{r} q_i \left(\overline{g_i} - g_i\right) = \blacksquare = \pi \cdot f_1$

I is saturated

Gröbner bases for Tate series

Standard definition once the term order is defined:

G is a Gröbner basis of $I \iff$ for all $f \in I$, there is $g \in G$ s.t. LT(g) divides LT(f)

- Standard equivalent characterizations and a surprising one:
 - 1. G is a Gröbner basis of I
 - 2. for all $f \in I$, f is reducible modulo G
 - 3. for all $f \in I$, f reduces to zero modulo G

If I is saturated:

- 4. \overline{G} is a Gröbner basis of \overline{I} in the sense of $\mathbb{F}[\mathbf{X}]$
- Every Tate ideal has a finite Gröbner basis
- ▶ It can be computed using the usual algorithms (reduction, Buchberger, F₄)
- ► In practice, the algorithms run with finite precision and without loss of precision

No division by π

$$\pi f \in I \implies f \in I$$

 \exists sequence of reductions converging to 0

What about valued fields?

- ► Recall: K = fraction field of K° \mathbb{Q}_{p} \mathbb{Z}_{p} $\mathbb{C}((X))$ $\mathbb{C}[[X]]$
- Elements are $\frac{b}{\pi^k}$ with $b \in K^\circ$, $k \in \mathbb{N}$
- The valuation can be negative but not infinite
- Same metric, same topology as K°

What about valued fields?

- ► Recall: K = fraction field of K° \mathbb{Q}_{p} \mathbb{Z}_{p} $\mathbb{C}((X))$ $\mathbb{C}[[X]]$
- Elements are $\frac{b}{\pi^k}$ with $b \in K^\circ$, $k \in \mathbb{N}$
- The valuation can be negative but not infinite
- Same metric, same topology as K°
- Tate series can be defined as in the integer case
- Same order, same definition of Gröbner bases
- Main difference: πX now divides X
- Another surprising equivalence
 - 1. G is a normalized GB of I
 - 2. $G \subset K{\mathbf{X}}^{\circ}$ is a GB of $I \cap K{\mathbf{X}}^{\circ}$
- In practice, we emulate computations in K{X}° in order to avoid losses of precision (and the ideal is saturated)

 $\forall g \in G, \operatorname{val}(\operatorname{LC}(g)) = 0 \ (\text{in part.}, G \subset K\{\mathbf{X}\}^{\circ})$

Generalizing the convergence condition: log-radii in \mathbb{Z}^n

Definition

- $K{X}$ = ring of power series converging for all $\mathbf{x} \in K^{\circ}$
 - = ring of power series whose general coefficients tend to 0

= ring of power series
$$\sum a_i \mathbf{X}^i$$
 with $val(a_i) \xrightarrow[|i| \to \infty]{} +\infty$

Generalizing the convergence condition: log-radii in \mathbb{Z}^n

Definition

- ▶ $K{X}$ = ring of power series converging for all **x** s.t. val $(x_k) \ge 0$ (k = 1, ..., n)
 - = ring of power series whose general coefficients tend to 0
 - = ring of power series $\sum a_i \mathbf{X}^i$ with $val(a_i) \xrightarrow[|i| \to \infty]{} +\infty$

Generalizing the convergence condition: log-radii in \mathbb{Z}^n

Definition

• K{**X**; **r**} = ring of power series converging for all **x** s.t. val(x_k) \ge r_k (k = 1, ..., n)

= ring of power series $\sum a_i \mathbf{X}^i$ with $val(a_i) - \mathbf{r} \cdot \mathbf{i} \xrightarrow[|\mathbf{i}| \to \infty]{} +\infty$

Generalizing the convergence condition: log-radii in \mathbb{Z}^n and beyond

 $\mathbf{X}^{\mathbf{i}} = X_1^{i_1} \cdots X_n^{i_n}$

Definition

- ► $K{X; r}$ = ring of power series converging for all x s.t. val $(x_k) \ge r_k$ (k = 1, ..., n)= ring of power series whose general coefficients tend to 0
 - = ring of power series $\sum a_i \mathbf{X}^i$ with $val(a_i) \mathbf{r} \cdot \mathbf{i} \xrightarrow[|\mathbf{i}| \to \infty]{} +\infty$
- The term order is not the same:

$$a\mathbf{X}^{\mathbf{i}} < b\mathbf{X}^{\mathbf{j}} \iff \begin{cases} \operatorname{val}(a) - \mathbf{r} \cdot \mathbf{i} < \operatorname{val}(b) - \mathbf{r} \cdot \mathbf{j} \\ \cdots = \cdots \text{ and } \mathbf{X}^{\mathbf{i}} <_{m} \mathbf{X}^{\mathbf{j}} \end{cases}$$

- $\mathbf{r} \in \mathbb{Q}^n$: similar (with special care)
- ▶ $\mathbf{r} = (\infty, \dots, \infty)$: convergence everywhere, polynomial case

Summary and bottlenecks

What we have seen so far: (ISSAC 2019)

- Definition of Gröbner bases for Tate ideals
- Characterizations à la Buchberger
- Algorithmes to compute them (Buchberger, F4)

Complexity bottleneck: reductions

- Not unusual with Gröbner bases, but here the complexity grows badly with the precision
- Several areas of possible improvement:
 - Avoid useless reductions to zero
 - Speed-up interreductions
 - Exploit overconvergence
 - End goal: complexity of reductions quasi-linear in precision

Series converging faster, *i.e.*, living in a smaller Tate algebra Ex: polynomials (log-radii ∞) seen as Tate series

Summary and bottlenecks

What we have seen so far: (ISSAC 2019)

- Definition of Gröbner bases for Tate ideals
- Characterizations à la Buchberger
- Algorithmes to compute them (Buchberger, F4)

Complexity bottleneck: reductions

- Not unusual with Gröbner bases, but here the complexity grows badly with the precision
- Several areas of possible improvement:
 - Avoid useless reductions to zero: signature algorithms (ISSAC 2020)
 - Speed-up interreductions
 - Exploit overconvergence
 - End goal: complexity of reductions quasi-linear in precision

Series converging faster, *i.e.*, living in a smaller Tate algebra Ex: polynomials (log-radii ∞) seen as Tate series

Summary and bottlenecks

What we have seen so far: (ISSAC 2019)

- Definition of Gröbner bases for Tate ideals
- Characterizations à la Buchberger
- Algorithmes to compute them (Buchberger, F4)

Complexity bottleneck: reductions

- ▶ Not unusual with Gröbner bases, but here the complexity grows badly with the precision
- Several areas of possible improvement:
 - Avoid useless reductions to zero: signature algorithms (ISSAC 2020)
 - Speed-up interreductions
 - Exploit overconvergence
 - End goal: complexity of reductions quasi-linear in precision

Series converging faster, *i.e.*, living in a smaller Tate algebra Ex: polynomials (log-radii ∞) seen as Tate series

1. Introduction and definitions

2. Gröbner bases

3. FGLM algorithm for zero-dimensional Tate ideals

Change of ordering:

- Useful in the classical case for two-steps strategies
- For zero-dimensional ideals, can be done efficiently with the FGLM algorithm [Faugère, Gianni, Lazard, Mora 1993]

For Tate algebras:

- Change of monomial ordering
- But also change of term ordering and radius of convergence

Idea for overconvergence:

- 1. Compute a Gröbner basis in the smaller Tate algebra
- 2. Use change of ordering to restrict to the larger one

Characteristics of the FGLM algorithm

0-dimensional ideals:

- Variety = finitely many points
- ▶ Quotient *K*[**X**]/*I* has finite dimension as a vector space over *K*
- Given a Gröbner basis *G*, the staircase under *G* is
 - $B = \{m \text{ monomial not divisible by any LT of } G\}$
- ► B is a K-basis of K[X]/I

Outline of the algorithm:

- In: G_1 a reduced Gröbner basis wrt an order $<_1$
 - <2 a monomial order
- Out: G_2 a reduced Gröbner basis wrt $<_2$
 - 1. Compute the matrices of multiplication by X_1, \ldots, X_n in the basis B_1 (computing B_1)
 - 2. Convert them into the Gröbner basis G_2 (computing B_2)

Characteristics of the FGLM algorithm

0-dimensional ideals:

- Variety = finitely many points
- ▶ Quotient *K*[**X**]/*I* has finite dimension as a vector space over *K*
- Given a Gröbner basis *G*, the staircase under *G* is
 - $B = \{m \text{ monomial not divisible by any LT of } G\}$
- ► B is a K-basis of K[X]/I

Outline of the algorithm:

- In: G_1 a reduced Gröbner basis wrt an order $<_1$
 - <2 a monomial order
- Out: G_2 a reduced Gröbner basis wrt $<_2$
 - 1. Compute the matrices of multiplication by X_1, \ldots, X_n in the basis B_1 (computing B_1)
 - 2. Convert them into the Gröbner basis G_2 (computing B_2)

Complexity

- Degree δ of the ideal = size of *B* = number of solutions (with multiplicity)
- Complexity cubic (or subcubic) in δ

0-dimensional Tate ideals

- Same definition as in the polynomial case: $K{X}/I$ has finite dimension
- B is a K-basis of $K\{X\}/I$
- Any element of $K{X}/I$ can be represented as a **polynomial**

0-dimensional Tate ideals

- Same definition as in the polynomial case: $K{X}/I$ has finite dimension
- B is a K-basis of $K{X}/I$
- ► Any element of *K*{**X**}/*I* can be represented as a **polynomial**

Outline of the algorithm

- In: G_1 a reduced Gröbner basis in $K{X; r}$ wrt an order $<_1$
 - <2 a monomial order
 - $\mathbf{u} \leq \mathbf{r}$ a system of log-radii
- Out: G_2 a reduced Gröbner basis in $K{X; u}$ wrt $<_2$
 - 1. Compute the matrices of multiplication by X_1, \ldots, X_n in the basis $B_{1,\mathbf{r}}$
 - 2. Convert them into matrices in the basis $B_{1,u}$ (computing $B_{1,u}$)
 - 3. Convert them into the Gröbner basis G_2

0-dimensional Tate ideals

- Same definition as in the polynomial case: $K{X}/I$ has finite dimension
- B is a K-basis of $K{X}/I$
- ► Any element of *K*{**X**}/*I* can be represented as a **polynomial**

Outline of the algorithm

- In: G_1 a reduced Gröbner basis in $K{X; r}$ wrt an order $<_1$
 - <2 a monomial order
 - $\mathbf{u} \leq \mathbf{r}$ a system of log-radii
- Out: G_2 a reduced Gröbner basis in $K{X; u}$ wrt $<_2$
 - 1. Compute the matrices of multiplication by X_1, \ldots, X_n in the basis $B_{1,\mathbf{r}}$
 - 2. Convert them into matrices in the basis $B_{1,u}$ (computing $B_{1,u}$)
 - 3. Convert them into the Gröbner basis G_2

Complexity

- Complexity cubic in δ
- Base complexity quasi-linear in the precision

- Idea: need to compute NF(X_im) for all $i \in \{1, \ldots, n\}, m \in B$ ►
- Proceed in increasing order and reuse the computations ►

- ▶ Idea: need to compute NF(X_im) for all $i \in \{1, ..., n\}, m \in B$
- Proceed in increasing order and reuse the computations

- ▶ Idea: need to compute NF(X_im) for all $i \in \{1, ..., n\}, m \in B$
- Proceed in increasing order and reuse the computations

cases:
1.
$$X_i m \in B$$
: $\rightarrow NF(X_i m) = X_i m$
2. $X_i m = LT(g)$ for $g \in G \rightarrow NF(X_i m) = X_i m - g$

- ▶ Idea: need to compute NF(X_im) for all $i \in \{1, ..., n\}, m \in B$
- Proceed in increasing order and reuse the computations

3 cases:

1. $X_i m \in B: \rightarrow NF(X_i m) = X_i m$

2.
$$X_i m = LT(g)$$
 for $g \in G \rightarrow NF(X_i m) = X_i m - g$

3. Otherwise, write
$$m = X_j m'$$
 with
 $NF(X_i m') = \sum a_{\mu} \mu$
 $\rightarrow NF(X_i m) = NF(X_i X_i m') = \sum a_{\mu} NF(X_i \mu)$

- ▶ Idea: need to compute NF(X_im) for all $i \in \{1, ..., n\}, m \in B$
- Proceed in increasing order and reuse the computations

cases:
1.
$$X_i m \in B$$
: $\rightarrow NF(X_i m) = X_i m$
2. $X_i m = LT(g)$ for $g \in G \rightarrow NF(X_i m) = X_i m - g$
3. Otherwise, write $m = X_j m'$ with
 $NF(X_i m') = \sum a_{\mu} \mu$
 $\rightarrow NF(X_i m) = NF(X_j X_i m') = \sum a_{\mu} NF(X_j \mu)$

Why does it work?

- Usual case: NF(m) only involves monomials smaller than m
- Tate case: not true, but if not their coefficient is smaller than 1 (i.e. divisible by π)
- So we can recover the value mod π , and repeating k times, the value mod π^k :

$$\begin{array}{c}
\stackrel{?}{\bullet} \stackrel{?}{\bullet} \stackrel{?}{\bullet} \stackrel{\circ}{\bullet} \\
\stackrel{\circ}{\bullet} \stackrel{\circ}{\bullet} \stackrel{\circ}{\bullet} \\
a \cdot b = ab
\end{array}$$

Recursive computation:

- > The previous algorithm relies on the order of the monomials
- Base complexity cubic in δ but quadratic in the precision
- Alternative: recursive algorithm, computing the coefficients mod π^k as needed
- Gives an order-agnostic algorithm which also works with non-0 log-radii
- ► Fast arithmetic + relaxed algorithms → base complexity quasi-linear in the precision [van der Hoeven 1997] [Berthomieu, van der Hoeven, Lecerf 2011] [Berthomieu, Lebreton 2012]

Recursive computation:

- > The previous algorithm relies on the order of the monomials
- Base complexity cubic in δ but quadratic in the precision
- Alternative: recursive algorithm, computing the coefficients mod π^k as needed
- Gives an order-agnostic algorithm which also works with non-0 log-radii
- ► Fast arithmetic + relaxed algorithms → base complexity quasi-linear in the precision [van der Hoeven 1997] [Berthomieu, van der Hoeven, Lecerf 2011] [Berthomieu, Lebreton 2012]

Non-reduced bases:

- Usual case: need bases to be reduced to ensure structure of the order
- Here, we have to consider monomials which we have not yet seen in any case
- As long as the basis is reduced mod π , the hypotheses hold
- So FGLM (with same order and log-radii as input and output) gives an algorithm for interreduction with complexity quasi-linear in precision
- The complexity is not only bounded in terms of δ anymore

Changing log-radii: what happens to the staircase?

Example with $K = \mathbb{Q}_p$

 \blacktriangleright $K[x, y]: \mathbf{r} = (\infty, \infty)$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

► $B_1 = \{1, x, y, y^2, xy, xy^2\}$, degree 6 ► $B_2 = \{1, y\}$, degree 2!

•
$$K\{x, y\}$$
: $\mathbf{u} = (0, 0)$
• $J = \langle y^2 - px^2, x - py^3 \rangle$

Changing log-radii: what happens to the staircase?

Example with $K = \mathbb{Q}_p$

 $\blacktriangleright \ K[x,y]:\mathbf{r}=(\infty,\infty)$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

- ► $B_1 = \{1, x, y, y^2, xy, xy^2\}$, degree 6 ► $B_2 = \{1, y\}$, degree 2!
- ► Why does x disappear from the staircase? Consider x⁴ · x

$$K\{x, y\}: \mathbf{u} = (0, 0)$$

$$J = \langle y^2 - px^2, x - py^3 \rangle$$

$$R = (1, y) degree 2!$$

 \blacktriangleright $K[x, y]: \mathbf{r} = (\infty, \infty)$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

► $B_1 = \{1, x, y, y^2, xy, xy^2\}$, degree 6 ► $B_2 = \{1, y\}$, degree 2!

Why does x disappear from the staircase?
Consider
$$x^4 \cdot x = \frac{1}{p}x^3y^2$$

•
$$K\{x, y\}: \mathbf{u} = (0, 0)$$

• $J = \langle y^2 - px^2, x - py^3 \rangle$

 $\blacktriangleright K[x, y]: \mathbf{r} = (\infty, \infty)$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

- ► $B_1 = \{1, x, y, y^2, xy, xy^2\}$, degree 6 ► $B_2 = \{1, y\}$, degree 2!
- Why does x disappear from the staircase? Consider $x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4$

$$K\{x, y\}: \mathbf{u} = (0, 0)$$

$$J = \langle y^2 - px^2, x - py^3 \rangle$$

 \blacktriangleright $K[x, y]: \mathbf{r} = (\infty, \infty)$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

- ► $B_1 = \{1, x, y, y^2, xy, xy^2\}$, degree 6 ► $B_2 = \{1, y\}$, degree 2!
- Why does x disappear from the staircase? Consider $x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y$

$$K\{x, y\}: \mathbf{u} = (0, 0)$$

$$J = \langle y^2 - px^2, x - py^3 \rangle$$

 $\blacktriangleright K[x, y]: \mathbf{r} = (\infty, \infty)$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

► $B_1 = \{1, x, y, y^2, xy, xy^2\}$, degree 6 ► $B_2 = \{1, y\}$, degree 2!

•
$$K\{x, y\}$$
: **u** = (0, 0)
• $J = \langle y^2 - px^2, x - py^3 \rangle$

Why does x disappear from the staircase? Consider $x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y = \frac{1}{p^4}y^3$

 $\blacktriangleright K[x, y]: \mathbf{r} = (\infty, \infty)$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

► $B_1 = \{1, x, y, y^2, xy, xy^2\}$, degree 6 ► $B_2 = \{1, y\}$, degree 2!

$$K\{x, y\}: \mathbf{u} = (0, 0)$$

$$J = \langle y^2 - px^2, x - py^3 \rangle$$

Why does x disappear from the staircase? Consider $x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y = \frac{1}{p^4}y^3 = \frac{1}{p^5}x$

 \blacktriangleright $K[x, y]: \mathbf{r} = (\infty, \infty)$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

► $B_1 = \{1, x, y, y^2, xy, xy^2\}$, degree 6 ► $B_2 = \{1, y\}$, degree 2!

$$K\{x, y\}: \mathbf{u} = (0, 0)$$

$$J = \langle y^2 - px^2, x - py^3 \rangle$$

Why does x disappear from the staircase? Consider $x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y = \frac{1}{p^4}y^3 = \frac{1}{p^5}x$ so $x = p^5 x^5$

 \blacktriangleright $K[x, y]: \mathbf{r} = (\infty, \infty)$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

► $B_1 = \{1, x, y, y^2, xy, xy^2\}$, degree 6 ► $B_2 = \{1, y\}$, degree 2!

$$K\{x, y\}: \mathbf{u} = (0, 0)$$

$$J = \langle y^2 - px^2, x - py^3 \rangle$$

Why does x disappear from the staircase? $1_{3,2} = 1_{3,2} = 1_{3,2} = 1_{3,2} = 1_{3,2} = 1_{3,2} = 1_{3,2} = 1_{3,2} = 1_{3,2} = 1_{3,2} = 1_{3,2} = 1_{3,2} = 1_{3,3} = 1_{3$

Consider
$$x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y = \frac{1}{p^4}y^3 = \frac{1}{p^5}y^5$$

so $x = p^5x^5 = p^{10}x^9$

 $\blacktriangleright K[x, y]: \mathbf{r} = (\infty, \infty)$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

► $B_1 = \{1, x, y, y^2, xy, xy^2\}$, degree 6 ► $B_2 = \{1, y\}$, degree 2!

$$K\{x, y\}: \mathbf{u} = (0, 0)$$

$$J = \langle y^2 - px^2, x - py^3 \rangle$$

- Why does x disappear from the staircase?

Consider
$$x^4 \cdot x = \frac{1}{p}x^3y^2 = \frac{1}{p^2}xy^4 = \frac{1}{p^3}x^2y = \frac{1}{p^4}y^3 = \frac{1}{p^5}x$$

 $\blacktriangleright K[x, y]: \mathbf{r} = (\infty, \infty)$

$$I = \langle px^2 - y^2, py^3 - x \rangle$$

► $B_1 = \{1, x, y, y^2, xy, xy^2\}$, degree 6 ► $B_2 = \{1, y\}$, degree 2!

•
$$K\{x, y\}$$
: **u** = (0, 0)
• $J = \langle y^2 - px^2, x - py^3 \rangle$

- Why does x disappear from the staircase?

Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by x:

$$T_x = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & p^{-1} & 0 & p^{-2} & 0 & p^{-3} \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{vmatrix} 1 \\ x \\ y \\ xy \\ y^2 \\ xy^2 \\ 1 & x & y & xy & y^2 & xy^2 \end{vmatrix}$$

Characteristic polynomial: $\chi_x = T^6 - p^{-5}T^2$

Problem: how to detect this phenomenon in general?

Characteristic polynomial: $\chi_x = T^6 - p^{-5}T^2$

Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by x:

$$T_x = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & p^{-1} & 0 & p^{-2} & 0 & p^{-3} \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \begin{array}{c} 1 \\ x \\ y \\ xy \\ y^2 \\ xy^2 \\ 1 & x & y & xy & y^2 & xy^2 \\ \end{pmatrix}$$

Problem: how to detect this phenomenon in general?

Slope factorization:

- ker(T⁴_x − p⁻⁵): characteristic space with "eigenvalue" with valuation −5/4 < 0 → vectors sent to 0
- ker(T_x²) : characteristic space with "eigenvalue" with valuation ∞ ≥ 0
 → vectors in the staircase

Construction

- ► Inclusion $K{\mathbf{X}; \mathbf{r}} \to K{\mathbf{X}; \mathbf{u}} \rightsquigarrow \max \Phi : V = K{\mathbf{X}; \mathbf{r}}/I \to K{\mathbf{X}; \mathbf{u}}/(IK{\mathbf{X}; \mathbf{u}})$
- Φ is surjective but not injective
- Vectors sent to 0:

 $N = \bigcap$ "Eigenspace" of T_i with valuation $< u_i$

Construction

- ► Inclusion $K{\mathbf{X}; \mathbf{r}} \to K{\mathbf{X}; \mathbf{u}} \rightsquigarrow \max \Phi : V = K{\mathbf{X}; \mathbf{r}}/I \to K{\mathbf{X}; \mathbf{u}}/(IK{\mathbf{X}; \mathbf{u}})$
- Φ is surjective but not injective
- Vectors sent to 0:

$$N = \bigcap$$
 "Eigenspace" of T_i with valuation $< u_i$

New quotient:

$$K\{\mathbf{X};\mathbf{u}\}/(I+N) = \sum$$
 "Eigenspace" of T_i with valuation $\geq u_i$

- Or simply compute a monomial basis of the quotient
- This linear algebra encodes a topological construction

Full FGLM algorithm for Tate algebras

- In: G_1 a reduced Gröbner basis in K{**X**; **r**} wrt an order $<_1$
 - <2 a monomial order
 - $\mathbf{u} \leq \mathbf{r}$ a system of log-radii
- Out: G_2 a reduced Gröbner basis wrt $<_2$ in K{**X**; **u**}
 - 1. Compute the matrices of multiplication by X_1, \ldots, X_n in the basis $B_{1,\mathbf{r}}$
 - Convert them into matrices of multiplication by X₁,..., X_n in the basis B_{1,u} (slope factorization)
 - 3. Convert into the basis G_2
 - 3.1 Use the usual algorithm modulo π (in \mathbb{F}) to compute $B_{2,\mathbf{u}}$ and $\overline{G_2}$
 - 3.2 Lift the linear algebra operations to obtain G_2
Full FGLM algorithm for Tate algebras

- In: G_1 a reduced Gröbner basis in K{**X**; **r**} wrt an order $<_1$
 - <2 a monomial order
 - $\mathbf{u} \leq \mathbf{r}$ a system of log-radii
- Out: G_2 a reduced Gröbner basis wrt $<_2$ in $K{X; u}$
 - 1. Compute the matrices of multiplication by X_1, \ldots, X_n in the basis $B_{1,\mathbf{r}}$
 - Convert them into matrices of multiplication by X₁,..., X_n in the basis B_{1,u} (slope factorization)
 - 3. Convert into the basis G_2
 - 3.1 Use the usual algorithm modulo π (in \mathbb{F}) to compute $B_{2,\mathbf{u}}$ and $\overline{G_2}$
 - 3.2 Lift the linear algebra operations to obtain G_2
- Complexity
 - Step 1 has base complexity $\tilde{O}(n\delta^3 \text{prec})$
 - Each other step has arithmetic complexity $\tilde{O}(n\delta^3)$
 - Final base complexity: $\tilde{O}(n\delta^3 \text{ prec})$

Conclusion and future work

Summary

- Definition and computation of Gröbner bases for Tate ideals
- Standard algorithms (Buchberger, F4) and with signatures
- $\blacktriangleright\,$ FGLM algorithm: for 0-dim ideals \rightarrow interreduction and change of convergence radii

Conclusion and future work

Summary

- Definition and computation of Gröbner bases for Tate ideals
- Standard algorithms (Buchberger, F4) and with signatures

Future work

- Integrate FGLM in the tate_algebra package of SageMath
- Generalizations of the interreduction in the middle of GB calculations
- Improve the complexity of reduction in positive dimension

Conclusion and future work

Summary

- Definition and computation of Gröbner bases for Tate ideals
- Standard algorithms (Buchberger, F4) and with signatures

Future work

- Integrate FGLM in the tate_algebra package of SageMath
- Generalizations of the interreduction in the middle of GB calculations
- Improve the complexity of reduction in positive dimension

Thank you for your attention!

References

- Gröbner bases over Tate algebras, ISSAC 2019
- Signature-based algorithms for Gröbner bases over Tate algebras, ISSAC 2020
- On FGLM algorithms with Tate algebras, preprint 2021