Gröbner bases for Tate algebras

Xavier Caruso ${ }^{1} \quad$ Tristan Vaccon ${ }^{2} \quad$ Thibaut Verron ${ }^{3}$

1. Université de Bordeaux, CNRS, Inria, Bordeaux, France
2. Université de Limoges, CNRS, XLIM, Limoges, France
3. Johannes Kepler University, Institute for Algebra, Linz, Austria

PolSys/SpecFun joint seminar, 12 February 2021

Algebraic geometry and analytic geometry

Analytic geometry	Analytic series
\downarrow	
Algebraic geometry	
GAGA (over $\mathbb{C})$	
Polynomials	

Algebraic geometry and analytic geometry ... over p-adics?

Analytic geometry Analytic series

```
|GAGA (over \mathbb{C})
```

Algebraic geometry \qquad Polynomials
$\downarrow \uparrow$ Non archimedean case: \mathbb{Q}_{p}
???
???

Rigid geometry and Tate series

Analytic geometry Analytic seriesGAGA (over \mathbb{C})Algebraic geometry
\qquadPolynomials
Tate's theory (over \mathbb{Q}_{p})
Rigid geometryTate series
Needed for algorithmic rigid geometry:
\square Basic arithmetic for Tate series
\square Ideal operations for Tate series
\square "Cut and patch" rigid varieties

Rigid geometry and Tate series

Analytic geometry Analytic seriesGAGA (over \mathbb{C})Algebraic geometry
\qquadPolynomials
Tate's theory (over \mathbb{Q}_{p})
Rigid geometryTate series
Needed for algorithmic rigid geometry:
\square Basic arithmetic for Tate series
\square Ideal operations for Tate series
\square "Cut and patch" rigid varieties

Valued fields and valuation rings: summary of basic definitions

Valuation: function val : $k \rightarrow \mathbb{Z} \cup\{\infty\}$ with:
$\checkmark \operatorname{val}(a)=\infty \Longleftrightarrow a=0$

- $\operatorname{val}(a b)=\operatorname{val}(a)+\operatorname{val}(b)$

- $\operatorname{val}(a+b) \geq \min (\operatorname{val}(a), \operatorname{val}(b))$

Valued fields and valuation rings: main examples and topology

Field	$K=\operatorname{Frac}\left(K^{\circ}\right)=K^{\circ}[1 / \pi]$	\mathbb{Q}_{p}	$k((X))$
Integer ring	$K^{\circ}=\{x: \operatorname{val}(x) \geq 0\}$	\mathbb{Z}_{p}	$k \llbracket X \rrbracket$
Uniformizer	π	p prime	X
Residue field	$K^{\circ} /\langle\pi\rangle$	\mathbb{F}_{p}	k

Valued fields and valuation rings: main examples and topology

Field	$K=\operatorname{Frac}\left(K^{\circ}\right)=K^{\circ}[1 / \pi]$	\mathbb{Q}_{p}	$k((X))$
Integer ring	$K^{\circ}=\{x: \operatorname{val}(x) \geq 0\}$	\mathbb{Z}_{p}	$k \llbracket X \rrbracket$
Uniformizer	π	p prime	X
Residue field	$K^{\circ} /\langle\pi\rangle$	\mathbb{F}_{p}	k

- Metric and topology defined by " a is small" \Longleftrightarrow "val (a) is large"
- All those examples are complete for that topology
- In a complete valuation ring, a series is convergent iff its general term goes to 0 :

$$
\sum_{n=0}^{0} a_{n}=a_{0}
$$

Valued fields and valuation rings: main examples and topology

Field	$K=\operatorname{Frac}\left(K^{\circ}\right)=K^{\circ}[1 / \pi]$	\mathbb{Q}_{p}	$k((X))$
Integer ring	$K^{\circ}=\{x: \operatorname{val}(x) \geq 0\}$	\mathbb{Z}_{p}	$k \llbracket X \rrbracket$
Uniformizer	π	p prime	X
Residue field	$K^{\circ} /\langle\pi\rangle$	\mathbb{F}_{p}	k

- Metric and topology defined by " a is small" \Longleftrightarrow "val (a) is large"
- All those examples are complete for that topology
- In a complete valuation ring, a series is convergent iff its general term goes to 0 :

$$
\sum_{n=0}^{1} a_{n}=a_{0}+a_{1}
$$

Valued fields and valuation rings: main examples and topology

Field	$K=\operatorname{Frac}\left(K^{\circ}\right)=K^{\circ}[1 / \pi]$	\mathbb{Q}_{p}	$k((X))$
Integer ring	$K^{\circ}=\{x: \operatorname{val}(x) \geq 0\}$	\mathbb{Z}_{p}	$k \llbracket X \rrbracket$
Uniformizer	π	p prime	X
Residue field	$K^{\circ} /\langle\pi\rangle$	\mathbb{F}_{p}	k

- Metric and topology defined by " a is small" \Longleftrightarrow "val (a) is large"
- All those examples are complete for that topology
- In a complete valuation ring, a series is convergent iff its general term goes to 0 :

$$
\sum_{n=0}^{2} a_{n}=a_{0}+a_{1}+a_{2}
$$

Valued fields and valuation rings: main examples and topology

Field	$K=\operatorname{Frac}\left(K^{\circ}\right)=K^{\circ}[1 / \pi]$	\mathbb{Q}_{p}	$k((X))$
Integer ring	$K^{\circ}=\{x: \operatorname{val}(x) \geq 0\}$	\mathbb{Z}_{p}	$k \llbracket X \rrbracket$
Uniformizer	π	p prime	X
Residue field	$K^{\circ} /\langle\pi\rangle$	\mathbb{F}_{p}	k

- Metric and topology defined by " a is small" \Longleftrightarrow "val (a) is large"
- All those examples are complete for that topology
- In a complete valuation ring, a series is convergent iff its general term goes to 0 :

$$
\begin{array}{ccc}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \circ \\
\sum_{n=0}^{3} a_{n}=a_{0}+a_{1}+a_{2}+a_{3}
\end{array}
$$

Valued fields and valuation rings: main examples and topology

Field	$K=\operatorname{Frac}\left(K^{\circ}\right)=K^{\circ}[1 / \pi]$	\mathbb{Q}_{p}	$k((X))$
Integer ring	$K^{\circ}=\{x: \operatorname{val}(x) \geq 0\}$	\mathbb{Z}_{p}	$k \llbracket X \rrbracket$
Uniformizer	π	p prime	X
Residue field	$K^{\circ} /\langle\pi\rangle$	\mathbb{F}_{p}	k

- Metric and topology defined by " a is small" \Longleftrightarrow "val (a) is large"
- All those examples are complete for that topology
- In a complete valuation ring, a series is convergent iff its general term goes to 0 :

$$
\begin{array}{ccc}
\bullet & \ddots & \bullet \\
\bullet & \circ & \circ \\
\sum_{n=0}^{\infty} a_{n}=a_{0}+a_{1}+a_{2}+a_{3}+\cdots
\end{array}
$$

Tate Series

$$
\mathbf{X}=X_{1}, \ldots, X_{n}
$$

Definition

- $K\{\mathbf{X}\}^{\circ}=$ ring of series in \mathbf{X} with coefficients in K° converging for all $\mathbf{x} \in K^{\circ}$ $=$ ring of power series whose general coefficients tend to 0

Examples

- Polynomials (finite sums are convergent)
- Tate series: $\sum_{i, j=0}^{\infty} \pi^{i+j} X^{i} Y^{j}=1+\pi X+\pi Y+\pi^{2} X^{2}+\pi^{2} X Y+\pi^{2} Y^{2}+\cdots$

- Not a Tate series: $\sum_{i=0}^{\infty} X^{i}=\stackrel{\bullet}{1}+\stackrel{\bullet}{1} X+\stackrel{\bullet}{1} X^{2}+\stackrel{\bullet}{1} X^{3}+\cdots$
- $F \in \mathbb{C}[[Y]][[\mathbf{X}]]$ is a Tate series $\Longleftrightarrow F \in \mathbb{C}[\mathbf{X}][[Y]]$

Outline of the talk

1. Introduction and definitions
2. Gröbner bases
3. FGLM algorithm for zero-dimensional Tate ideals

Outline of the talk

1. Introduction and definitions

2. Gröbner bases
3. FGLM algorithm for zero-dimensional Tate ideals

Gröbner bases in finite precision

Gröbner bases:

- Multi-purpose tool for ideal arithmetic in polynomial algebras
- Membership testing, elimination, intersection...
- Uses successive (terminating) reductions

Main challenges with finite precision:

- Propagation of rounding errors
- Impossibility of zero-test

Gröbner bases in finite precision

Gröbner bases:

- Multi-purpose tool for ideal arithmetic in polynomial algebras
- Membership testing, elimination, intersection...
- Uses successive (terminating) reductions

Main challenges with finite precision:

- Propagation of rounding errors
- A priori not a problem in a valuation ring
- Impossibility of zero-test
- Consider larger coefficients first
- Non-terminating reductions

Gröbner bases in finite precision

Gröbner bases:

- Multi-purpose tool for ideal arithmetic in polynomial algebras
- Membership testing, elimination, intersection...
- Uses successive (terminating) reductions

Main challenges with finite precision:

- Propagation of rounding errors
- A priori not a problem in a valuation ring
- Impossibility of zero-test
- Consider larger coefficients first
- Non-terminating reductions
- Theory: replace terminating with convergent everywhere
- Practice: we always work with bounded precision

Term ordering for Tate algebras

$$
\mathbf{X}^{\mathbf{i}}=X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}
$$

- Starting from a usual monomial ordering $1<_{m} \mathbf{X}^{\mathbf{i}_{1}}<_{m} \mathbf{X}^{\mathbf{i}_{2}}<_{m} \ldots$
- We define a term ordering putting more weight on large coefficients

Usual term ordering:

Term ordering for Tate series:
$\cdots<\pi^{2} \mathbf{X}^{\mathbf{i}_{3}}<\pi \cdot 1<\pi{ }^{\circ}$

Term ordering for Tate algebras

$$
\mathbf{X}^{\mathbf{i}}=X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}
$$

- Starting from a usual monomial ordering $1<_{m} \mathbf{X}^{\mathbf{i}_{1}}<_{m} \mathbf{X}^{\mathbf{i}_{2}}<_{m} \ldots$
- We define a term ordering putting more weight on large coefficients

Usual term ordering:

Term ordering for Tate series:

- It has infinite descending chains, but they converge to zero
- Tate series always have a leading term

Term ordering for Tate algebras

$$
\mathbf{X}^{\mathbf{i}}=X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}
$$

- Starting from a usual monomial ordering $1<_{m} \mathbf{X}^{\mathbf{i}_{1}}<_{m} \mathbf{X}^{\mathbf{i}_{2}}<_{m} \ldots$
- We define a term ordering putting more weight on large coefficients

Usual term ordering:

Term ordering for Tate series:

- It has infinite descending chains, but they converge to zero
- Tate series always have a leading term
- Isomorphism $K\{\mathbf{X}\}^{\circ} /\langle\pi\rangle \simeq \mathbb{F}[\mathbf{X}]$

$$
f \mapsto \bar{f}
$$

compatible with the term order

$$
\begin{aligned}
& \left.\begin{array}{cc}
\mathrm{LT}(f) \\
\vdots & \ddots \\
\vdots & \ddots
\end{array}\right) \\
& \bar{f}=\overline{a_{2}} X Y+\overline{a_{1}} X \\
& a_{2} X Y+a_{1} X \\
& \vdots
\end{aligned}
$$

Gröbner bases for Tate series

- Standard definition once the term order is defined:
G is a Gröbner basis of $I \Longleftrightarrow$ for all $f \in I$, there is $g \in G$ s.t. $\operatorname{LT}(g)$ divides $\operatorname{LT}(f)$
- Standard equivalent characterizations:

1. G is a Gröbner basis of I
2. for all $f \in I, f$ is reducible modulo G
3. for all $f \in I, f$ reduces to zero modulo $G \quad \exists$ sequence of reductions converging to 0

Gröbner bases for Tate series

- Standard definition once the term order is defined:
G is a Gröbner basis of $I \Longleftrightarrow$ for all $f \in I$, there is $g \in G$ s.t. $\operatorname{LT}(g)$ divides $\operatorname{LT}(f)$
- Standard equivalent characterizations and a surprising one:

1. G is a Gröbner basis of I
2. for all $f \in I, f$ is reducible modulo G
3. for all $f \in I, f$ reduces to zero modulo $G \quad \exists$ sequence of reductions converging to 0

If I is saturated:

$$
\pi f \in I \Longrightarrow f \in I
$$

4. \bar{G} is a Gröbner basis of \bar{l} in the sense of $\mathbb{F}[\mathbf{X}]$

How does it work? $(4 \Longrightarrow 3)$

1. Start with $f \in I$, we can assume that f has valuation 0
2. Separate $f=\bar{f}+f-\bar{f}$

How does it work? $(4 \Longrightarrow 3)$

1. Start with $f \in I$, we can assume that f has valuation 0
2. Separate $\stackrel{\bullet}{f}=\stackrel{\bullet}{f}+f-\bar{f}$
3. $\bar{f} \in \bar{I}$ so we have a sequence of reductions
\bar{G} is a Gröbner basis of \bar{I}

$$
\stackrel{\bullet}{f}-\stackrel{\bullet}{q_{1}} \stackrel{\bullet}{g_{1}}-\stackrel{\bullet}{q_{2}} \stackrel{\bullet}{g_{2}}-\cdots-q_{r} \stackrel{\bullet}{\bar{g}_{r}}=0
$$

How does it work? $(4 \Longrightarrow 3)$

1. Start with $f \in I$, we can assume that f has valuation 0
2. Separate $\stackrel{\bullet}{f}=\stackrel{\ominus}{f}+f-\bar{f}$
3. $\bar{f} \in \bar{I}$ so we have a sequence of reductions
\bar{G} is a Gröbner basis of \bar{I}

$$
\stackrel{\bullet}{f}-\stackrel{\bullet}{q_{1}} \stackrel{\bullet}{g_{1}}-\stackrel{\bullet}{q_{2}} \bar{\bullet} \bar{g}_{2}-\cdots-\stackrel{\bullet}{q_{r}} \frac{\bullet}{g_{r}}=0
$$

4. So we have a sequence of reductions

$$
f-\sum_{i=1}^{r} q_{i} g_{i}
$$

How does it work? $(4 \Longrightarrow 3)$

1. Start with $f \in I$, we can assume that f has valuation 0
2. Separate $\stackrel{\bullet}{f}=\stackrel{\bullet}{f}+f-\bar{f}$
3. $\bar{f} \in \bar{I}$ so we have a sequence of reductions
\bar{G} is a Gröbner basis of \bar{I}

$$
\stackrel{\bullet}{f}-\stackrel{\bullet}{q_{1}} \stackrel{\bullet}{g_{1}}-\stackrel{\bullet}{q_{2}} \bar{\bullet} \bar{g}_{2}-\cdots-\stackrel{\bullet}{q_{r}} \frac{\bullet}{g_{r}}=0
$$

4. So we have a sequence of reductions

$$
f-\sum_{i=1}^{r} q_{i} g_{i}=f-\sum_{i=1}^{r} q_{i} \frac{\bar{g}_{i}}{}+\sum_{i=1}^{r} q_{i}\left(\frac{\stackrel{g}{g_{i}}}{}-g_{i}\right)
$$

How does it work? $(4 \Longrightarrow 3)$

1. Start with $f \in I$, we can assume that f has valuation 0
2. Separate $f=\bar{f}+f-\bar{f}$
3. $\bar{f} \in \bar{I}$ so we have a sequence of reductions
\bar{G} is a Gröbner basis of \bar{I}

$$
\stackrel{\bullet}{f}-\stackrel{\bullet}{q_{1}} \stackrel{\bullet}{g_{1}}-\stackrel{\bullet}{q_{2}} \bar{\bullet} \bar{g}_{2}-\cdots-\stackrel{\bullet}{q_{r}} \frac{\bullet}{g_{r}}=0
$$

4. So we have a sequence of reductions

$$
\begin{aligned}
f-\sum_{i=1}^{r} q_{i} g_{i} & =f-\sum_{i=1}^{r} q_{i} \stackrel{\bullet}{g}_{i} \\
& \\
& =\sum_{i=1}^{r} q_{i}\left(\overline{g_{i}}-g_{i}\right) \\
& f-\bar{f}+\sum_{i=1}^{r}{ }_{q}\left(\overline{g_{i}}-g_{i}\right)
\end{aligned}
$$

How does it work? $(4 \Longrightarrow 3)$

1. Start with $f \in I$, we can assume that f has valuation 0
2. Separate $\stackrel{\bullet}{f}=\stackrel{\bullet}{f}+f-\bar{f}$
3. $\bar{f} \in \bar{I}$ so we have a sequence of reductions
\bar{G} is a Gröbner basis of \bar{I}

$$
\stackrel{\bullet}{f}-\stackrel{\bullet}{q_{1}} \stackrel{\bullet}{g_{1}}-\stackrel{\bullet}{q_{2}} \bar{\bullet} \bar{g}_{2}-\cdots-\stackrel{\bullet}{q_{r}} \frac{\bullet}{g_{r}}=0
$$

4. So we have a sequence of reductions

$$
f-\sum_{i=1}^{r} q_{i} g_{i}=f-\sum_{i=1}^{r} q_{i} \frac{\bar{g}_{i}}{}+\sum_{i=1}^{r} q_{i}\left(\frac{\stackrel{g}{g_{i}}}{}-g_{i}\right)
$$

$$
=\begin{array}{cc}
\vdots \\
f-\bar{f} & +\sum_{i=1}^{r} q_{i}\left(\bar{g}_{i}-g_{i}\right) \\
\vdots \\
\vdots
\end{array}=\pi \cdot \frac{\vdots}{\vdots}
$$

How does it work? $(4 \Longrightarrow 3)$

1. Start with $f \in I$, we can assume that f has valuation 0
2. Separate $f=\bar{f}+f-\bar{f}$
3. $\bar{f} \in \bar{I}$ so we have a sequence of reductions

$$
\overline{\stackrel{\rightharpoonup}{f}}-\stackrel{\bullet}{q_{1}} \stackrel{\bullet}{g_{1}}-\stackrel{\bullet}{q_{2}} \overline{g_{2}}-\cdots-\stackrel{\bullet}{q_{r}} \frac{\bullet}{\bar{g}_{r}}=0
$$

4. So we have a sequence of reductions

$$
f-\sum_{i=1}^{r} q_{i} g_{i}=f-\sum_{i=1}^{r} q_{i} \frac{\bar{g}_{i}}{}+\sum_{i=1}^{r} q_{i}\left(\frac{\bullet}{g_{i}}-g_{i}\right)
$$

$$
=f \stackrel{\circ}{\circ}+\sum_{i=1}^{r} \stackrel{\bullet}{q_{i}}\left(\overline{g_{i}}-g_{i}\right)=\stackrel{\ominus}{\square}=\pi \cdot f_{1}
$$

Gröbner bases for Tate series

- Standard definition once the term order is defined:
G is a Gröbner basis of $I \Longleftrightarrow$ for all $f \in I$, there is $g \in G$ s.t. $\operatorname{LT}(g)$ divides $\operatorname{LT}(f)$
- Standard equivalent characterizations and a surprising one:

1. G is a Gröbner basis of I
2. for all $f \in I, f$ is reducible modulo G
3. for all $f \in I, f$ reduces to zero modulo $G \quad \exists$ sequence of reductions converging to 0

If I is saturated:

$$
\pi f \in I \Longrightarrow f \in I
$$

4. \bar{G} is a Gröbner basis of \bar{l} in the sense of $\mathbb{F}[\mathbf{X}]$

- Every Tate ideal has a finite Gröbner basis
- It can be computed using the usual algorithms (reduction, Buchberger, F_{4})
- In practice, the algorithms run with finite precision and without loss of precision

What about valued fields?

- Recall: $K=$ fraction field of K°
\mathbb{Q}_{p}
$\mathbb{C}((X))$

- Elements are $\frac{b}{\pi^{k}}$ with $b \in K^{\circ}, k \in \mathbb{N}$
- The valuation can be negative but not infinite

$$
\begin{aligned}
& a=a_{-3} \pi^{-3}+a_{-2} \pi^{-2}+\ldots \\
& \text { \} } \operatorname{val}(a)=-3
\end{aligned}
$$

- Same metric, same topology as K°

What about valued fields?

- Recall: $K=$ fraction field of K°
\mathbb{Q}_{p}
$\mathbb{C}((X))$
- Elements are $\frac{b}{\pi^{k}}$ with $b \in K^{\circ}, k \in \mathbb{N}$
- The valuation can be negative but not infinite

$$
\begin{aligned}
& a=a_{-3} \pi^{-3}+a_{-2} \pi^{-2}+\ldots \\
& \vdots \operatorname{val}(a)=-3
\end{aligned}
$$

- Same metric, same topology as K°
- Tate series can be defined as in the integer case
- Same order, same definition of Gröbner bases
- Main difference: πX now divides X

- Another surprising equivalence

1. G is a normalized $G B$ of I

$$
\forall g \in G, \operatorname{val}(\mathrm{LC}(g))=0 \text { (in part., } G \subset K\{\mathbf{X}\}^{\circ} \text {) }
$$

2. $G \subset K\{\mathbf{X}\}^{\circ}$ is a $G B$ of $I \cap K\{\mathbf{X}\}^{\circ}$

- In practice, we emulate computations in $K\{\mathbf{X}\}^{\circ}$ in order to avoid losses of precision (and the ideal is saturated)

Generalizing the convergence condition: log-radii in \mathbb{Z}^{n}

Definition

$$
\mathbf{X}^{\mathbf{i}}=X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}
$$

- $K\{\mathbf{X}\}=$ ring of power series converging for all $\mathbf{x} \in K^{\circ}$
$=$ ring of power series whose general coefficients tend to 0
$=$ ring of power series $\sum a_{\mathbf{i}} \mathbf{X}^{\mathbf{i}}$ with $\operatorname{val}\left(a_{\mathbf{i}}\right) \xrightarrow[|\mathbf{i}| \rightarrow \infty]{ }+\infty$

Generalizing the convergence condition: log-radii in \mathbb{Z}^{n}

Definition

$$
\mathbf{X}^{\mathbf{i}}=X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}
$$

- $K\{\mathbf{X}\}=$ ring of power series converging for all \mathbf{x} s.t. $\operatorname{val}\left(x_{k}\right) \geq 0(k=1, \ldots, n)$
$=$ ring of power series whose general coefficients tend to 0
$=$ ring of power series $\sum a_{\mathbf{i}} \mathbf{X}^{\mathbf{i}}$ with $\operatorname{val}\left(a_{\mathbf{i}}\right) \xrightarrow[|\mathbf{i}| \rightarrow \infty]{\longrightarrow}+\infty$

Generalizing the convergence condition: log-radii in \mathbb{Z}^{n}

Definition

$$
\mathbf{X}^{\mathbf{i}}=X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}
$$

- $K\{\mathbf{X} ; \mathbf{r}\}=$ ring of power series converging for all \mathbf{x} s.t. $\operatorname{val}\left(x_{k}\right) \geq r_{k}(k=1, \ldots, n)$
$=$ ring of power series whose general coefficients tend to 0
$=$ ring of power series $\sum a_{\mathbf{i}} \mathbf{X}^{\mathbf{i}}$ with $\operatorname{val}\left(a_{\mathbf{i}}\right)-\mathbf{r} \cdot \mathbf{i} \xrightarrow[|\mathbf{i}| \rightarrow \infty]{ }+\infty$

- Reduction to previous case by change of variables: $f(\pi X)=1+\pi X+\pi^{2} X^{2}+\cdots$

Generalizing the convergence condition: log-radii in \mathbb{Z}^{n} and beyond

$$
\mathbf{X}^{\mathbf{i}}=X_{1}^{i_{1}} \cdots X_{n}^{i_{n}}
$$

Definition

- $K\{\mathbf{X} ; \mathbf{r}\}=$ ring of power series converging for all x s.t. $\operatorname{val}\left(x_{k}\right) \geq r_{k}(k=1, \ldots, n)$
$=$ ring of power series whose general coefficients tend to 0
$=$ ring of power series $\sum a_{\mathbf{i}} \mathbf{X}^{\mathbf{i}}$ with $\operatorname{val}\left(a_{\mathbf{i}}\right)-\mathbf{r} \cdot \mathbf{i} \xrightarrow[|\mathbf{i}| \rightarrow \infty]{\longrightarrow}+\infty$
- The term order is not the same:

$$
a \mathbf{X}^{\mathbf{i}}<b \mathbf{X}^{\mathbf{j}} \Longleftrightarrow\left\{\begin{array}{l}
\operatorname{val}(a)-\mathbf{r} \cdot \mathbf{i}<\operatorname{val}(b)-\mathbf{r} \cdot \mathbf{j} \\
\cdots=\cdots \text { and } \mathbf{X}^{\mathbf{i}}<_{m} \mathbf{X}^{\mathbf{j}}
\end{array}\right.
$$

- $\mathbf{r} \in \mathbb{Q}^{n}:$ similar (with special care)
- $\mathbf{r}=(\infty, \ldots, \infty)$: convergence everywhere, polynomial case

Summary and bottlenecks

What we have seen so far: (ISSAC 2019)

- Definition of Gröbner bases for Tate ideals
- Characterizations à la Buchberger
- Algorithmes to compute them (Buchberger, F4)

Complexity bottleneck: reductions

- Not unusual with Gröbner bases, but here the complexity grows badly with the precision
- Several areas of possible improvement:
- Avoid useless reductions to zero
- Speed-up interreductions
- Exploit overconvergence
- End goal: complexity of reductions quasi-linear in precision

Series converging faster, i.e., living in a smaller Tate algebra Ex: polynomials (log-radii ∞) seen as Tate series

Summary and bottlenecks

What we have seen so far: (ISSAC 2019)

- Definition of Gröbner bases for Tate ideals
- Characterizations à la Buchberger
- Algorithmes to compute them (Buchberger, F4)

Complexity bottleneck: reductions

- Not unusual with Gröbner bases, but here the complexity grows badly with the precision
- Several areas of possible improvement:
- Avoid useless reductions to zero: signature algorithms (ISSAC 2020)
- Speed-up interreductions
- Exploit overconvergence
- End goal: complexity of reductions quasi-linear in precision

Series converging faster, i.e., living in a smaller Tate algebra Ex: polynomials (log-radii ∞) seen as Tate series

Summary and bottlenecks

What we have seen so far: (ISSAC 2019)

- Definition of Gröbner bases for Tate ideals
- Characterizations à la Buchberger
- Algorithmes to compute them (Buchberger, F4)

Complexity bottleneck: reductions

- Not unusual with Gröbner bases, but here the complexity grows badly with the precision
- Several areas of possible improvement:
- Avoid useless reductions to zero: signature algorithms (ISSAC 2020)
- Speed-up interreductions
- Exploit overconvergence
- End goal: complexity of reductions quasi-linear in precision

Series converging faster, i.e., living in a smaller Tate algebra Ex: polynomials (log-radii ∞) seen as Tate series

Outline of the talk

1. Introduction and definitions

2. Gröbner bases

3. FGLM algorithm for zero-dimensional Tate ideals

Change of ordering and the FGLM algorithm

Change of ordering:

- Useful in the classical case for two-steps strategies
- For zero-dimensional ideals, can be done efficiently with the FGLM algorithm [Faugère, Gianni, Lazard, Mora 1993]

For Tate algebras:

- Change of monomial ordering
- But also change of term ordering and radius of convergence

Idea for overconvergence:

1. Compute a Gröbner basis in the smaller Tate algebra
2. Use change of ordering to restrict to the larger one

Characteristics of the FGLM algorithm

0-dimensional ideals:

- Variety = finitely many points
- Quotient $K[\mathbf{X}] / I$ has finite dimension as a vector space over K
- Given a Gröbner basis G, the staircase under G is $B=\{m$ monomial not divisible by any LT of $G\}$
- B is a K-basis of $K[\mathbf{X}] / I$

Outline of the algorithm:

In: G_{1} a reduced Gröbner basis wrt an order $<_{1}$
$<_{2}$ a monomial order
Out: G_{2} a reduced Gröbner basis wrt <2

1. Compute the matrices of multiplication by X_{1}, \ldots, X_{n} in the basis B_{1} (computing B_{1})
2. Convert them into the Gröbner basis G_{2} (computing B_{2})

Characteristics of the FGLM algorithm

0-dimensional ideals:

- Variety = finitely many points
- Quotient $K[\mathbf{X}] / I$ has finite dimension as a vector space over K
- Given a Gröbner basis G, the staircase under G is $B=\{m$ monomial not divisible by any LT of $G\}$
- B is a K-basis of $K[\mathbf{X}] / I$

Outline of the algorithm:

In: G_{1} a reduced Gröbner basis wrt an order $<_{1}$
$<_{2}$ a monomial order
Out: G_{2} a reduced Gröbner basis wrt <2

1. Compute the matrices of multiplication by X_{1}, \ldots, X_{n} in the basis B_{1} (computing B_{1})
2. Convert them into the Gröbner basis G_{2} (computing B_{2})

Complexity

- Degree δ of the ideal = size of $B=$ number of solutions (with multiplicity)
- Complexity cubic (or subcubic) in δ

FGLM algorithm for Tate ideals

0-dimensional Tate ideals

- Same definition as in the polynomial case: $K\{\mathbf{X}\} / I$ has finite dimension
- B is a K-basis of $K\{\mathbf{X}\} / I$
- Any element of $K\{\mathbf{X}\} / I$ can be represented as a polynomial

FGLM algorithm for Tate ideals

0-dimensional Tate ideals

- Same definition as in the polynomial case: $K\{\mathbf{X}\} / I$ has finite dimension
- B is a K-basis of $K\{\mathbf{X}\} / I$
- Any element of $K\{\mathbf{X}\} / I$ can be represented as a polynomial

Outline of the algorithm

In: G_{1} a reduced Gröbner basis in $K\{\mathbf{X} ; \mathbf{r}\}$ wrt an order $<_{1}$
$<_{2}$ a monomial order
$\mathbf{u} \leq \mathbf{r}$ a system of log-radii
Out: G_{2} a reduced Gröbner basis in $K\{\mathbf{X} ; \mathbf{u}\}$ wrt $<_{2}$

1. Compute the matrices of multiplication by X_{1}, \ldots, X_{n} in the basis $B_{1, \mathbf{r}}$
2. Convert them into matrices in the basis $B_{1, \mathbf{u}}$ (computing $B_{1, \mathbf{u}}$)
3. Convert them into the Gröbner basis G_{2}

FGLM algorithm for Tate ideals

0-dimensional Tate ideals

- Same definition as in the polynomial case: $K\{\mathbf{X}\} / I$ has finite dimension
- B is a K-basis of $K\{\mathbf{X}\} / I$
- Any element of $K\{\mathbf{X}\} / I$ can be represented as a polynomial

Outline of the algorithm

In: G_{1} a reduced Gröbner basis in $K\{\mathbf{X} ; \mathbf{r}\}$ wrt an order $<_{1}$
$<_{2}$ a monomial order
$\mathbf{u} \leq \mathbf{r}$ a system of log-radii
Out: G_{2} a reduced Gröbner basis in $K\{\mathbf{X} ; \mathbf{u}\}$ wrt $<_{2}$

1. Compute the matrices of multiplication by X_{1}, \ldots, X_{n} in the basis $B_{1, \mathbf{r}}$
2. Convert them into matrices in the basis $B_{1, \mathbf{u}}$ (computing $B_{1, \mathbf{u}}$)
3. Convert them into the Gröbner basis G_{2}

Complexity

- Complexity cubic in δ
- Base complexity quasi-linear in the precision

Iterative computation of the multiplication matrices

- Idea: need to compute $\mathrm{NF}\left(X_{i} m\right)$ for all $i \in\{1, \ldots, n\}, m \in B$
- Proceed in increasing order and reuse the computations

Iterative computation of the multiplication matrices

- Idea: need to compute $\mathrm{NF}\left(X_{i} m\right)$ for all $i \in\{1, \ldots, n\}, m \in B$
- Proceed in increasing order and reuse the computations

Iterative computation of the multiplication matrices

- Idea: need to compute $\mathrm{NF}\left(X_{i} m\right)$ for all $i \in\{1, \ldots, n\}, m \in B$
- Proceed in increasing order and reuse the computations

Iterative computation of the multiplication matrices

- Idea: need to compute $\mathrm{NF}\left(X_{i} m\right)$ for all $i \in\{1, \ldots, n\}, m \in B$
- Proceed in increasing order and reuse the computations

Iterative computation of the multiplication matrices

- Idea: need to compute $\mathrm{NF}\left(X_{i} m\right)$ for all $i \in\{1, \ldots, n\}, m \in B$
- Proceed in increasing order and reuse the computations

1. $X_{i} m \in B: \rightarrow \mathrm{NF}\left(X_{i} m\right)=X_{i} m$
2. $X_{i} m=\mathrm{LT}(g)$ for $g \in G \rightarrow \mathrm{NF}\left(X_{i} m\right)=X_{i} m-g$
3. Otherwise, write $m=X_{j} m^{\prime}$ with

$$
\begin{aligned}
& \operatorname{NF}\left(X_{i} m^{\prime}\right)=\sum a_{\mu} \mu \\
& \rightarrow \operatorname{NF}\left(X_{i} m\right)=\operatorname{NF}\left(X_{j} X_{i} m^{\prime}\right)=\sum a_{\mu} \operatorname{NF}\left(X_{j} \mu\right)
\end{aligned}
$$

Why does it work?

- Usual case: NF (m) only involves monomials smaller than m
- Tate case: not true, but if not their coefficient is smaller than 1 (i.e. divisible by π)
- So we can recover the value $\bmod \pi$, and repeating k times, the value $\bmod \pi^{k}$:

Two improvements on the computation of the multiplication matrices

Recursive computation:

- The previous algorithm relies on the order of the monomials
- Base complexity cubic in δ but quadratic in the precision
- Alternative: recursive algorithm, computing the coefficients mod π^{k} as needed
- Gives an order-agnostic algorithm which also works with non-0 log-radii
- Fast arithmetic + relaxed algorithms \rightarrow base complexity quasi-linear in the precision [van der Hoeven 1997] [Berthomieu, van der Hoeven, Lecerf 2011] [Berthomieu, Lebreton 2012]

Two improvements on the computation of the multiplication matrices

Recursive computation:

- The previous algorithm relies on the order of the monomials
- Base complexity cubic in δ but quadratic in the precision
- Alternative: recursive algorithm, computing the coefficients mod π^{k} as needed
- Gives an order-agnostic algorithm which also works with non-0 log-radii
- Fast arithmetic + relaxed algorithms \rightarrow base complexity quasi-linear in the precision [van der Hoeven 1997] [Berthomieu, van der Hoeven, Lecerf 2011] [Berthomieu, Lebreton 2012]

Non-reduced bases:

- Usual case: need bases to be reduced to ensure structure of the order
- Here, we have to consider monomials which we have not yet seen in any case
- As long as the basis is reduced $\bmod \pi$, the hypotheses hold
- So FGLM (with same order and log-radii as input and output) gives an algorithm for interreduction with complexity quasi-linear in precision
- The complexity is not only bounded in terms of δ anymore

Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $J=\left\langle y^{2}-p x^{2}, x-p y^{3}\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $B_{2}=\{1, y\}$, degree 2 !

Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $J=\left\langle y^{2}-p x^{2}, x-p y^{3}\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $B_{2}=\{1, y\}$, degree 2 !
-Why does x disappear from the staircase?
Consider $x^{4} \cdot x$

Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $J=\left\langle y^{2}-p x^{2}, x-p y^{3}\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $B_{2}=\{1, y\}$, degree 2 !
- Why does x disappear from the staircase?

Consider $x^{4} \cdot x=\frac{1}{p} x^{3} y^{2}$

Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $J=\left\langle y^{2}-p x^{2}, x-p y^{3}\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $B_{2}=\{1, y\}$, degree 2 !
- Why does x disappear from the staircase?

Consider $x^{4} \cdot x=\frac{1}{p} x^{3} y^{2}=\frac{1}{p^{2}} x y^{4}$

Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $J=\left\langle y^{2}-p x^{2}, x-p y^{3}\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $B_{2}=\{1, y\}$, degree 2 !
- Why does x disappear from the staircase?

Consider $x^{4} \cdot x=\frac{1}{p} x^{3} y^{2}=\frac{1}{p^{2}} x y^{4}=\frac{1}{p^{3}} x^{2} y$

Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $J=\left\langle y^{2}-p x^{2}, x-p y^{3}\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $B_{2}=\{1, y\}$, degree 2 !
- Why does x disappear from the staircase?

Consider $x^{4} \cdot x=\frac{1}{p} x^{3} y^{2}=\frac{1}{p^{2}} x y^{4}=\frac{1}{p^{3}} x^{2} y=\frac{1}{p^{4}} y^{3}$

Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $J=\left\langle y^{2}-p x^{2}, x-p y^{3}\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $B_{2}=\{1, y\}$, degree 2 !
- Why does x disappear from the staircase?

Consider $x^{4} \cdot x=\frac{1}{p} x^{3} y^{2}=\frac{1}{p^{2}} x y^{4}=\frac{1}{p^{3}} x^{2} y=\frac{1}{p^{4}} y^{3}=\frac{1}{p^{5}} x$

Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $J=\left\langle y^{2}-p x^{2}, x-p y^{3}\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $B_{2}=\{1, y\}$, degree 2 !
- Why does x disappear from the staircase?

Consider $x^{4} \cdot x=\frac{1}{p} x^{3} y^{2}=\frac{1}{p^{2}} x y^{4}=\frac{1}{p^{3}} x^{2} y=\frac{1}{p^{4}} y^{3}=\frac{1}{p^{5}} x$

Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
- $I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $J=\left\langle\begin{array}{c}\bullet \\ \vdots \\ \left.y^{2}-p x^{2}, x-p y^{3}\right\rangle\end{array}\right.$
- $B_{2}=\{1, y\}$, degree 2 !
- Why does x disappear from the staircase?

Consider $x^{4} \cdot x=\frac{1}{p} x^{3} y^{2}=\frac{1}{p^{2}} x y^{4}=\frac{1}{p^{3}} x^{2} y=\frac{1}{p^{4}} y^{3}=\frac{1}{p^{5}} x$

Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $J=\left\langle y^{2}-p x^{2}, x-p y^{3}\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $B_{2}=\{1, y\}$, degree 2 !
- Why does x disappear from the staircase?

Consider $x^{4} \cdot x=\frac{1}{p} x^{3} y^{2}=\frac{1}{p^{2}} x y^{4}=\frac{1}{p^{3}} x^{2} y=\frac{1}{p^{4}} y^{3}=\frac{1}{p^{5}} x$

Changing log-radii: what happens to the staircase?

Example with $K=\mathbb{Q}_{p}$

- $K[x, y]: \mathbf{r}=(\infty, \infty)$
- $K\{x, y\}: \mathbf{u}=(0,0)$
- $I=\left\langle p x^{2}-y^{2}, p y^{3}-x\right\rangle$
- $J=\left\langle y^{2}-p x^{2}, x-p y^{3}\right\rangle$
- $B_{1}=\left\{1, x, y, y^{2}, x y, x y^{2}\right\}$, degree 6
- $B_{2}=\{1, y\}$, degree 2 !
- Why does x disappear from the staircase?

Consider $x^{4} \cdot x=\frac{1}{p} x^{3} y^{2}=\frac{1}{p^{2}} x y^{4}=\frac{1}{p^{3}} x^{2} y=\frac{1}{p^{4}} y^{3}=\frac{1}{p^{5}} x$

Multiplication matrices and slope factorization

- Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by x :
$T_{x}=\left(\begin{array}{cccccc}0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & p^{-1} & 0 & p^{-2} & 0 & p^{-3} \\ 0 & 0 & 0 & 0 & 1 & 0\end{array}\right) \begin{gathered}1 \\ x \\ y \\ 1\end{gathered} x_{y}$

Characteristic polynomial:

$$
\chi_{x}=T^{6}-p^{-5} T^{2}
$$

Multiplication matrices and slope factorization

- Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by x :

Characteristic polynomial:

$$
\chi_{x}=T^{6}-p^{-5} T^{2}
$$

Multiplication matrices and slope factorization

- Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by x :

Characteristic polynomial:

$$
\begin{aligned}
\chi_{x} & =T^{6}-p^{-5} T^{2} \\
& =T^{2} \cdot\left(T^{4}-p^{-5}\right)
\end{aligned}
$$

Multiplication matrices and slope factorization

- Problem: how to detect this phenomenon in general?

Consider the multiplication matrix by x :

Characteristic polynomial:

$$
\begin{aligned}
\chi_{x} & =T^{6}-p^{-5} T^{2} \\
& =T^{2} \cdot\left(T^{4}-p^{-5}\right)
\end{aligned}
$$

Slope factorization:

- $\operatorname{ker}\left(T_{x}^{4}-p^{-5}\right)$: characteristic space with "eigenvalue" with valuation $-5 / 4<0$
\rightarrow vectors sent to 0
- $\operatorname{ker}\left(T_{x}^{2}\right)$: characteristic space with "eigenvalue" with valuation $\infty \geq 0$
\rightarrow vectors in the staircase

Characterization and construction of the new staircase

Construction

- Inclusion $K\{\mathbf{X} ; \mathbf{r}\} \rightarrow K\{\mathbf{X} ; \mathbf{u}\} \rightsquigarrow \operatorname{map} \Phi: V=K\{\mathbf{X} ; \mathbf{r}\} / I \rightarrow K\{\mathbf{X} ; \mathbf{u}\} /(I K\{\mathbf{X} ; \mathbf{u}\})$
- Φ is surjective but not injective
- Vectors sent to 0 :

$$
N=\bigcap \text { "Eigenspace" of } T_{i} \text { with valuation }<u_{i}
$$

Characterization and construction of the new staircase

Construction

- Inclusion $K\{\mathbf{X} ; \mathbf{r}\} \rightarrow K\{\mathbf{X} ; \mathbf{u}\} \rightsquigarrow \operatorname{map} \Phi: V=K\{\mathbf{X} ; \mathbf{r}\} / I \rightarrow K\{\mathbf{X} ; \mathbf{u}\} /(I K\{\mathbf{X} ; \mathbf{u}\})$
- Φ is surjective but not injective
- Vectors sent to 0 :

$$
N=\bigcap \text { "Eigenspace" of } T_{i} \text { with valuation }<u_{i}
$$

- New quotient:

$$
K\{\mathbf{X} ; \mathbf{u}\} /(I+N)=\sum \text { "Eigenspace" of } T_{i} \text { with valuation } \geq u_{i}
$$

- Or simply compute a monomial basis of the quotient
- This linear algebra encodes a topological construction

Full FGLM algorithm for Tate algebras

In: G_{1} a reduced Gröbner basis in $K\{\mathbf{X} ; \mathbf{r}\}$ wrt an order $<_{1}$
$<_{2}$ a monomial order
$\mathbf{u} \leq \mathbf{r}$ a system of log-radii
Out: G_{2} a reduced Gröbner basis wrt $<_{2}$ in $K\{\mathbf{X} ; \mathbf{u}\}$

1. Compute the matrices of multiplication by X_{1}, \ldots, X_{n} in the basis $B_{1, \mathrm{r}}$
2. Convert them into matrices of multiplication by X_{1}, \ldots, X_{n} in the basis $B_{1, \mathrm{u}}$ (slope factorization)
3. Convert into the basis G_{2}
3.1 Use the usual algorithm modulo π (in \mathbb{F}) to compute $B_{2, \mathbf{u}}$ and $\overline{G_{2}}$
3.2 Lift the linear algebra operations to obtain G_{2}

Full FGLM algorithm for Tate algebras

In: G_{1} a reduced Gröbner basis in $K\{\mathbf{X} ; \mathbf{r}\}$ wrt an order $<_{1}$
$<_{2}$ a monomial order
$\mathbf{u} \leq \mathbf{r}$ a system of log-radii
Out: G_{2} a reduced Gröbner basis wrt $<_{2}$ in $K\{\mathbf{X} ; \mathbf{u}\}$

1. Compute the matrices of multiplication by X_{1}, \ldots, X_{n} in the basis $B_{1, \mathrm{r}}$
2. Convert them into matrices of multiplication by X_{1}, \ldots, X_{n} in the basis $B_{1, \mathrm{u}}$ (slope factorization)
3. Convert into the basis G_{2}
3.1 Use the usual algorithm modulo π (in \mathbb{F}) to compute $B_{2, \mathbf{u}}$ and $\overline{G_{2}}$
3.2 Lift the linear algebra operations to obtain G_{2}

Complexity

- Step 1 has base complexity $\tilde{O}\left(n \delta^{3}\right.$ prec)
- Each other step has arithmetic complexity $\tilde{O}\left(n \delta^{3}\right)$
- Final base complexity: $\tilde{O}\left(n \delta^{3}\right.$ prec $)$

Conclusion and future work

Summary

- Definition and computation of Gröbner bases for Tate ideals
- Standard algorithms (Buchberger, F4) and with signatures
- FGLM algorithm: for 0-dim ideals \rightarrow interreduction and change of convergence radii

Conclusion and future work

Summary

- Definition and computation of Gröbner bases for Tate ideals
- Standard algorithms (Buchberger, F4) and with signatures
- FGLM algorithm: for 0-dim ideals \rightarrow interreduction and change of convergence radii

Future work

- Integrate FGLM in the tate_algebra package of SageMath
- Generalizations of the interreduction in the middle of GB calculations
- Improve the complexity of reduction in positive dimension

Conclusion and future work

Summary

- Definition and computation of Gröbner bases for Tate ideals
- Standard algorithms (Buchberger, F4) and with signatures
- FGLM algorithm: for 0-dim ideals \rightarrow interreduction and change of convergence radii

Future work

- Integrate FGLM in the tate_algebra package of SageMath
- Generalizations of the interreduction in the middle of GB calculations
- Improve the complexity of reduction in positive dimension

Thank you for your attention!

References

- Gröbner bases over Tate algebras, ISSAC 2019
- Signature-based algorithms for Gröbner bases over Tate algebras, ISSAC 2020
- On FGLM algorithms with Tate algebras, preprint 2021

