Philippe Moustrou, UiT - The Arctic University of Norway POLSYS Seminar - February 26, 2021

Tromsø: the Maris Bordeaux of the North

Tromsø: the Maris Bordeaux of the North

• Symmetric systems of equations:

• Symmetric systems of equations:

How symmetric is the set of solutions?

• Symmetric systems of equations:

How symmetric is the set of solutions?

 \rightarrow An analogue of the degree principle using combinatorics of S_n .

• Symmetric systems of equations:

How symmetric is the set of solutions?

 \rightarrow An analogue of the degree principle using combinatorics of \mathcal{S}_n .

• Symmetry reduction in SAGE certificates:

• Symmetric systems of equations:

How symmetric is the set of solutions?

 \rightarrow An analogue of the degree principle using combinatorics of \mathcal{S}_n .

• Symmetry reduction in SAGE certificates: How to use symmetries for computing certificates?

• Symmetric systems of equations:

How symmetric is the set of solutions?

 \rightarrow An analogue of the degree principle using combinatorics of \mathcal{S}_n .

• Symmetry reduction in SAGE certificates:

How to use symmetries for computing certificates? \rightarrow Orbit reduction of relative entropy programs.

How to find the minimum of P on \mathbb{R}^n ?

How to find the minimum of P on \mathbb{R}^n ?

Idea 1: Compute the critical points of *P*.
 → Solve a symmetric polynomial system.

How to find the minimum of P on \mathbb{R}^n ?

- Idea 1: Compute the critical points of P.
 → Solve a symmetric polynomial system.
- Idea 2: Look for the largest λ such that P − λ is non-negative on ℝⁿ.
 → Optimize over subcones of the non-negativity cone.

How to find the minimum of P on \mathbb{R}^n ?

- Idea 1: Compute the critical points of P.
 → Solve a symmetric polynomial system.
- Idea 2: Look for the largest λ such that P − λ is non-negative on ℝⁿ.
 → Optimize over subcones of the non-negativity cone.

These two approaches are computationally expensive.

How to find the minimum of P on \mathbb{R}^n ?

- Idea 1: Compute the critical points of P.
 → Solve a symmetric polynomial system.
- Idea 2: Look for the largest λ such that P − λ is non-negative on ℝⁿ.
 → Optimize over subcones of the non-negativity cone.

These two approaches are computationally expensive.

How to exploit symmetries using group theory and combinatorics?

Does a symmetric polynomial have symmetric minimizers?

Does a symmetric polynomial have symmetric minimizers? → Not in general:

$$f(x,y) = (x^2 + (y-1)^2)((x-1)^2 + y^2)$$

is symmetric, non-negative, and its only zeros are (1,0) and (0,1).

Does a symmetric polynomial have symmetric minimizers? \rightarrow Not in general:

$$f(x,y) = (x^2 + (y-1)^2)((x-1)^2 + y^2)$$

is symmetric, non-negative, and its only zeros are (1,0) and (0,1).

 \rightarrow Are there any situations in which the set of minimizers contains highly symmetric points?

 \rightarrow Let \mathbb{K} be a real closed field, and let P be a polynomial in n variables of degree d, invariant under the action of the symmetric group.

 \rightarrow Let \mathbb{K} be a real closed field, and let P be a polynomial in n variables of degree d, invariant under the action of the symmetric group.

 \rightarrow Let $k = \max(2, \lfloor \frac{d}{2} \rfloor).$

 \rightarrow Let \mathbb{K} be a real closed field, and let P be a polynomial in n variables of degree d, invariant under the action of the symmetric group.

 \rightarrow Let $k = \max(2, \lfloor \frac{d}{2} \rfloor).$

→ Then there exists $x \in \mathbb{K}^n$ such that P(x) = 0 if and only if there exists $y \in \mathbb{K}^n$ with at most k distinct coordinates such that P(y) = 0.

 \rightarrow Let \mathbb{K} be a real closed field, and let P be a polynomial in n variables of degree d, invariant under the action of the symmetric group.

 \rightarrow Let $k = \max(2, \lfloor \frac{d}{2} \rfloor).$

→ Then there exists $x \in \mathbb{K}^n$ such that P(x) = 0 if and only if there exists $y \in \mathbb{K}^n$ with at most k distinct coordinates such that P(y) = 0.

 \rightarrow From a geometric point of view: the corresponding variety is non empty if and only if it contains a point with at most k distinct coordinates.

 \rightarrow Now assume we want to solve the polynomial system

$$P_1=P_2=\ldots=P_r=0,$$

where S_n permutes the P_i 's. Let $I = \langle P_1, \ldots, P_r \rangle$, and V(I) the associated variety.

 \rightarrow Now assume we want to solve the polynomial system

$$P_1=P_2=\ldots=P_r=0,$$

where S_n permutes the P_i 's. Let $I = \langle P_1, \ldots, P_r \rangle$, and V(I) the associated variety.

 \rightarrow Let $d = \max(\deg(P_1), \ldots, \deg(P_r)).$

 \rightarrow Now assume we want to solve the polynomial system

$$P_1=P_2=\ldots=P_r=0,$$

where S_n permutes the P_i 's. Let $I = \langle P_1, \ldots, P_r \rangle$, and V(I) the associated variety.

 \rightarrow Let $d = \max(\deg(P_1), \ldots, \deg(P_r)).$

 \rightarrow Over a real closed field, V(I) is non empty, if and only if it contains a point with at most d distinct coordinates.

 \rightarrow Now assume we want to solve the polynomial system

$$P_1=P_2=\ldots=P_r=0,$$

where S_n permutes the P_i 's. Let $I = \langle P_1, \ldots, P_r \rangle$, and V(I) the associated variety.

$$\rightarrow$$
 Let $d = \max(\deg(P_1), \ldots, \deg(P_r)).$

 \rightarrow Over a real closed field, V(I) is non empty, if and only if it contains a point with at most d distinct coordinates.

 \rightarrow Indeed, these solutions are the zeroes of the symmetric polynomial

$$Q=\sum_{\sigma\in\mathcal{S}_n}P_i^2.$$

 \rightarrow Now assume we want to solve the polynomial system

$$P_1=P_2=\ldots=P_r=0,$$

where S_n permutes the P_i 's. Let $I = \langle P_1, \ldots, P_r \rangle$, and V(I) the associated variety.

$$\rightarrow \text{Let } d = \max(\deg(P_1), \dots, \deg(P_r)).$$

 \rightarrow Over a real closed field, V(I) is non empty, if and only if it contains a point with at most *d* distinct coordinates.

 \rightarrow Indeed, these solutions are the zeroes of the symmetric polynomial

$$Q=\sum_{\sigma\in\mathcal{S}_n}P_i^2.$$

 \rightarrow [M., Riener, Verdure, 2021]: A combinatorial analogue of this result depending on the leading monomials of the P_i 's.

 \rightarrow Up to permutation, every $x \in \mathbb{R}^n$ is of the form

$$x = (\underbrace{x_1, \ldots, x_1}_{\lambda_1}, \underbrace{x_2, \ldots, x_2}_{\lambda_2}, \ldots, \underbrace{x_k, \ldots, x_k}_{\lambda_k}).$$

 \rightarrow Up to permutation, every $x \in \mathbb{R}^n$ is of the form

$$x = (\underbrace{x_1, \ldots, x_1}_{\lambda_1}, \underbrace{x_2, \ldots, x_2}_{\lambda_2}, \ldots, \underbrace{x_k, \ldots, x_k}_{\lambda_k}).$$

→ The partition $\Lambda(x) := (\lambda_1, \lambda_2, \cdots, \lambda_k) \vdash n$ is called the orbit type of x.

 \rightarrow Up to permutation, every $x \in \mathbb{R}^n$ is of the form

$$x = (\underbrace{x_1, \ldots, x_1}_{\lambda_1}, \underbrace{x_2, \ldots, x_2}_{\lambda_2}, \ldots, \underbrace{x_k, \ldots, x_k}_{\lambda_k}).$$

→ The partition $\Lambda(x) := (\lambda_1, \lambda_2, \cdots, \lambda_k) \vdash n$ is called the orbit type of x.

 \rightarrow Then if x is a zero of P, the point $\tilde{x} = (x_1, x_2, \dots, x_k) \in \mathbb{R}^k$ is a zero of

$$P^{\lambda}(Z_1, Z_2, \dots, Z_k) = P(\underbrace{Z_1, \dots, Z_1}_{\lambda_1}, \underbrace{Z_2, \dots, Z_2}_{\lambda_2}, \dots, \underbrace{Z_k, \dots, Z_k}_{\lambda_k})$$

 \rightarrow Up to permutation, every $x \in \mathbb{R}^n$ is of the form

$$x = (\underbrace{x_1, \ldots, x_1}_{\lambda_1}, \underbrace{x_2, \ldots, x_2}_{\lambda_2}, \ldots, \underbrace{x_k, \ldots, x_k}_{\lambda_k}).$$

→ The partition $\Lambda(x) := (\lambda_1, \lambda_2, \cdots, \lambda_k) \vdash n$ is called the orbit type of x.

 \rightarrow Then if x is a zero of P, the point $\tilde{x} = (x_1, x_2, \dots, x_k) \in \mathbb{R}^k$ is a zero of

$$P^{\lambda}(Z_1, Z_2, \dots, Z_k) = P(\underbrace{Z_1, \dots, Z_1}_{\lambda_1}, \underbrace{Z_2, \dots, Z_2}_{\lambda_2}, \dots, \underbrace{Z_k, \dots, Z_k}_{\lambda_k})$$

 \rightarrow Degree principle \rightarrow Only look at $k \leq d$.

 \rightarrow Up to permutation, every $x \in \mathbb{R}^n$ is of the form

$$x = (\underbrace{x_1, \ldots, x_1}_{\lambda_1}, \underbrace{x_2, \ldots, x_2}_{\lambda_2}, \ldots, \underbrace{x_k, \ldots, x_k}_{\lambda_k}).$$

→ The partition $\Lambda(x) := (\lambda_1, \lambda_2, \cdots, \lambda_k) \vdash n$ is called the orbit type of x.

 \rightarrow Then if x is a zero of P, the point $\tilde{x} = (x_1, x_2, \dots, x_k) \in \mathbb{R}^k$ is a zero of

$$P^{\lambda}(Z_1, Z_2, \dots, Z_k) = P(\underbrace{Z_1, \dots, Z_1}_{\lambda_1}, \underbrace{Z_2, \dots, Z_2}_{\lambda_2}, \dots, \underbrace{Z_k, \dots, Z_k}_{\lambda_k})$$

 \rightarrow Degree principle \rightarrow Only look at $k \leq d$.

 \rightarrow At most $(n+1)^d$ equivalent problems in d variables!

 \rightarrow Up to permutation, every $x \in \mathbb{R}^n$ is of the form

$$x = (\underbrace{x_1, \ldots, x_1}_{\lambda_1}, \underbrace{x_2, \ldots, x_2}_{\lambda_2}, \ldots, \underbrace{x_k, \ldots, x_k}_{\lambda_k}).$$

→ The partition $\Lambda(x) := (\lambda_1, \lambda_2, \cdots, \lambda_k) \vdash n$ is called the orbit type of x.

 \rightarrow Then if x is a zero of P, the point $\tilde{x} = (x_1, x_2, \dots, x_k) \in \mathbb{R}^k$ is a zero of

$$P^{\lambda}(Z_1, Z_2, \dots, Z_k) = P(\underbrace{Z_1, \dots, Z_1}_{\lambda_1}, \underbrace{Z_2, \dots, Z_2}_{\lambda_2}, \dots, \underbrace{Z_k, \dots, Z_k}_{\lambda_k})$$

 \rightarrow Degree principle \rightarrow Only look at $k \leq d$.

- \rightarrow At most $(n+1)^d$ equivalent problems in d variables!
- \rightarrow [M., Riener, Verdure, 2021]: Which orbit types for the solutions?
\rightarrow A partition $\lambda \vdash n$ might be represented by a tableau: For $(4,3,1) \vdash 8$,

 \rightarrow A partition $\lambda \vdash n$ might be represented by a tableau: For $(4,3,1) \vdash 8$,

 \rightarrow The dual partition is given by $(\lambda^{\perp})_{i} = |\{j, \lambda_{j} \ge i\}|$:

 \rightarrow A partition $\lambda \vdash n$ might be represented by a tableau: For $(4,3,1) \vdash 8$,

 \rightarrow The dual partition is given by $(\lambda^{\perp})_i = |\{j, \lambda_j \ge i\}|$:

 $\rightarrow \lambda$ dominates μ if for every *i*, $\sum_{j=1}^{i} \lambda_j \ge \sum_{j=1}^{i} \mu_j$:

 \rightarrow A Young tableau of shape $\mu \vdash n$ is a tableau T of shape μ filled-in with numbers from 1 to n.

 \rightarrow A Young tableau of shape $\mu \vdash n$ is a tableau T of shape μ filled-in with numbers from 1 to n.

 \rightarrow The Specht polynomial sp_T associated with T is the product of the column Vandermonde determinants

 $sp_T = (X_4 - X_8)(X_4 - X_3)(X_8 - X_3)(X_2 - X_7)(X_6 - X_5)$

 \rightarrow A Young tableau of shape $\mu \vdash n$ is a tableau T of shape μ filled-in with numbers from 1 to n.

 \rightarrow The Specht polynomial sp_T associated with T is the product of the column Vandermonde determinants

 $sp_T = (X_4 - X_8)(X_4 - X_3)(X_8 - X_3)(X_2 - X_7)(X_6 - X_5)$

 \rightarrow The μ -Specht ideal: $I_{\mu}^{sp} := \langle sp_T, T \text{ of shape } \mu \rangle \subset \mathbb{K}[X_1, \dots, X_n].$

 \rightarrow A Young tableau of shape $\mu \vdash n$ is a tableau T of shape μ filled-in with numbers from 1 to n.

 \rightarrow The Specht polynomial sp_T associated with T is the product of the column Vandermonde determinants

$$sp_T = (X_4 - X_8)(X_4 - X_3)(X_8 - X_3)(X_2 - X_7)(X_6 - X_5)$$

 \rightarrow The μ -Specht ideal: $I_{\mu}^{sp} := \langle sp_T, T \text{ of shape } \mu \rangle \subset \mathbb{K}[X_1, \dots, X_n].$

 \rightarrow The μ -Specht variety: $V_{\mu} = V(I_{\mu}^{sp})$.

 \rightarrow A Young tableau of shape $\mu \vdash n$ is a tableau T of shape μ filled-in with numbers from 1 to n.

 \rightarrow The Specht polynomial sp_T associated with T is the product of the column Vandermonde determinants

$$sp_T = (X_4 - X_8)(X_4 - X_3)(X_8 - X_3)(X_2 - X_7)(X_6 - X_5)$$

 \rightarrow The μ -Specht ideal: $I_{\mu}^{sp} := \langle sp_T, T \text{ of shape } \mu \rangle \subset \mathbb{K}[X_1, \dots, X_n].$

 \rightarrow The μ -Specht variety: $V_{\mu} = V(I_{\mu}^{sp})$.

 \rightarrow Note: For $x \in \mathbb{K}^n$, $x \notin V_{\Lambda(x)}$:

Theorem [M., Riener, Verdure]

For λ, μ partitions of n,

 $I_{\lambda}^{\mathsf{sp}} \subset I_{\mu}^{\mathsf{sp}} \Leftrightarrow V_{\mu} \subset V_{\lambda} \Leftrightarrow \lambda \trianglelefteq \mu.$

Theorem [M., Riener, Verdure]

For λ, μ partitions of n,

$$I^{\mathsf{sp}}_\lambda \subset I^{\mathsf{sp}}_\mu \Leftrightarrow V_\mu \subset V_\lambda \Leftrightarrow \lambda \trianglelefteq \mu.$$

 \rightarrow Corollary: Characterization with orbit types:

$$V_{\mu} = \left(igcup_{\lambda ext{leq} \mu} H_{\lambda}
ight)^{c} = igcup_{
u
eq \mu} H_{
u}$$

Theorem [M., Riener, Verdure]

For λ, μ partitions of n,

$$I^{\mathsf{sp}}_\lambda \subset I^{\mathsf{sp}}_\mu \Leftrightarrow V_\mu \subset V_\lambda \Leftrightarrow \lambda \trianglelefteq \mu.$$

 \rightarrow Corollary: Characterization with orbit types:

$$V_{\mu} = \left(igcup_{\lambda ext{leq} \mu} H_{\lambda}
ight)^c = igcup_{
u ext{leq} \mu} H_{
u}$$

 \rightarrow Consequence: If *I* is a symmetric ideal and $I_{\mu}^{sp} \subset I$, then

$$V(I) \subset V_\mu = igcup_{
u
ot \! = \mu} H_
u.$$

Theorem [M., Riener, Verdure]

For λ, μ partitions of n,

$$I^{\mathsf{sp}}_{\lambda} \subset I^{\mathsf{sp}}_{\mu} \Leftrightarrow V_{\mu} \subset V_{\lambda} \Leftrightarrow \lambda \trianglelefteq \mu.$$

 \rightarrow Corollary: Characterization with orbit types:

$$V_{\mu} = \left(igcup_{\lambda ext{leq} \mu} H_{\lambda}
ight)^c = igcup_{
u ext{leq} \mu} H_{
u}$$

 \rightarrow Consequence: If *I* is a symmetric ideal and $I_{\mu}^{sp} \subset I$, then

$$V(I)\subset V_{\mu}=igcup_{
u
otin \mu}H_{
u}.$$

 \rightarrow Only look at points x with $\Lambda(x) \not \leq \mu!$

 \rightarrow Given a symmetric ideal *I*, what are the Specht ideals contained in *I*?

 \rightarrow Given a symmetric ideal *I*, what are the Specht ideals contained in *I*?

 \rightarrow Let $P \in I$, of degree d. Let P_d be the component of P of degree d.

- \rightarrow Given a symmetric ideal *I*, what are the Specht ideals contained in *I*?
- \rightarrow Let $P \in I$, of degree d. Let P_d be the component of P of degree d.
- \rightarrow The weight wt(P_d) of P_d : the number of variables appearing in P_d .

- \rightarrow Given a symmetric ideal *I*, what are the Specht ideals contained in *I*?
- \rightarrow Let $P \in I$, of degree d. Let P_d be the component of P of degree d.
- \rightarrow The weight wt(P_d) of P_d : the number of variables appearing in P_d .

→ Assume wt(P_d) = ℓ with $\ell + d \leq n$. To a monomial $m = X_1^{\lambda_1} X_2^{\lambda_2} \cdot X_\ell^{\lambda_\ell}$ of P_d , where $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_\ell$ we associate the partition

$$\mu(m) = (\lambda_1 + 1, \lambda_2 + 1, \dots, \lambda_{\ell} + 1, \underbrace{1, \dots, 1}_{n-d-\ell}).$$

- \rightarrow Given a symmetric ideal *I*, what are the Specht ideals contained in *I*?
- \rightarrow Let $P \in I$, of degree d. Let P_d be the component of P of degree d.
- \rightarrow The weight wt(P_d) of P_d : the number of variables appearing in P_d .
- → Assume wt(P_d) = ℓ with $\ell + d \leq n$. To a monomial $m = X_1^{\lambda_1} X_2^{\lambda_2} \cdot X_\ell^{\lambda_\ell}$ of P_d , where $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_\ell$ we associate the partition

$$\mu(m) = (\lambda_1 + 1, \lambda_2 + 1, \dots, \lambda_\ell + 1, \underbrace{1, \dots, 1}_{n-d-\ell}).$$

Theorem [M., Riener, Verdure]

$$I^{\mathsf{sp}}_{\mu(m)^{\perp}} \subset I$$

 $V(I) \cap H_{\lambda} = \emptyset$ for all $\lambda \trianglelefteq \mu(m)^{\perp}$

 $V(I) \cap H_{\lambda} = \emptyset$ for all $\lambda \trianglelefteq \mu(m)^{\perp}$

 \rightarrow If len $(\lambda) > d$, then $\lambda \trianglelefteq \mu(m)^{\perp}$.

 $V(I) \cap H_{\lambda} = \emptyset$ for all $\lambda \trianglelefteq \mu(m)^{\perp}$

 \rightarrow If len $(\lambda) > d$, then $\lambda \trianglelefteq \mu(m)^{\perp}$.

 \rightarrow So any point in V(I) has at most d distinct coordinates...

 $V(I) \cap H_{\lambda} = \emptyset$ for all $\lambda \trianglelefteq \mu(m)^{\perp}$

 \rightarrow If len $(\lambda) > d$, then $\lambda \trianglelefteq \mu(m)^{\perp}$.

 \rightarrow So any point in V(I) has at most d distinct coordinates...

 \rightarrow We recover (at least) the degree principle! And even more:

 $V(I) \cap H_{\lambda} = \emptyset$ for all $\lambda \trianglelefteq \mu(m)^{\perp}$

 \rightarrow If len $(\lambda) > d$, then $\lambda \trianglelefteq \mu(m)^{\perp}$.

- \rightarrow So any point in V(I) has at most d distinct coordinates...
- \rightarrow We recover (at least) the degree principle! And even more:
- $\rightarrow V(I)$ contains no point in with more than d distinct coordinates.

 $V(I) \cap H_{\lambda} = \emptyset$ for all $\lambda \trianglelefteq \mu(m)^{\perp}$

 \rightarrow If len $(\lambda) > d$, then $\lambda \trianglelefteq \mu(m)^{\perp}$.

- \rightarrow So any point in V(I) has at most d distinct coordinates...
- \rightarrow We recover (at least) the degree principle! And even more:
- \rightarrow V(I) contains no point in with more than d distinct coordinates.
- \rightarrow The dimension of the variety is at most *d*.

 \rightarrow Recall: to get a lower bound on the minimum of P, find λ such that

 $P-\lambda \geq 0.$

 \rightarrow Recall: to get a lower bound on the minimum of *P*, find λ such that

 $P - \lambda \ge 0.$

 \rightarrow However, it is hard to decide if a polynomial belongs to the cone of non-negative polynomials.

 \rightarrow Recall: to get a lower bound on the minimum of P, find λ such that

 $P - \lambda \ge 0.$

 \rightarrow However, it is hard to decide if a polynomial belongs to the cone of non-negative polynomials.

 \rightarrow Idea: Use subcones that are easier to characterize algorithmically.

 \rightarrow Recall: to get a lower bound on the minimum of P, find λ such that

 $P - \lambda \ge 0.$

 \rightarrow However, it is hard to decide if a polynomial belongs to the cone of non-negative polynomials.

 \rightarrow Idea: Use subcones that are easier to characterize algorithmically.

 \rightarrow The most famous of them is the cone of Sums Of Squares.

 \rightarrow Recall: to get a lower bound on the minimum of P, find λ such that

 $P - \lambda \ge 0.$

 \rightarrow However, it is hard to decide if a polynomial belongs to the cone of non-negative polynomials.

 \rightarrow Idea: Use subcones that are easier to characterize algorithmically.

 \rightarrow The most famous of them is the cone of Sums Of Squares.

 \rightarrow There exist non-negative polynomials that are not sums of squares.

 \rightarrow Recall: to get a lower bound on the minimum of *P*, find λ such that

 $P - \lambda \ge 0.$

 \rightarrow However, it is hard to decide if a polynomial belongs to the cone of non-negative polynomials.

- \rightarrow Idea: Use subcones that are easier to characterize algorithmically.
- \rightarrow The most famous of them is the cone of Sums Of Squares.
- \rightarrow There exist non-negative polynomials that are not sums of squares.

 \rightarrow Example: the Motzkin polynomial,

$$1 + x^2y^4 + x^4y^2 - 3x^2y^2$$

 \rightarrow Recall: to get a lower bound on the minimum of P, find λ such that

 $P - \lambda \ge 0.$

 \rightarrow However, it is hard to decide if a polynomial belongs to the cone of non-negative polynomials.

- \rightarrow Idea: Use subcones that are easier to characterize algorithmically.
- \rightarrow The most famous of them is the cone of Sums Of Squares.
- \rightarrow There exist non-negative polynomials that are not sums of squares.

 \rightarrow Example: the Motzkin polynomial,

$$1 + x^2y^4 + x^4y^2 - 3x^2y^2$$

 \rightarrow What about other certificates?
\rightarrow Remember the arithmetic-geometric inequality

$$(x_1x_2\cdots x_n)^{1/n} \leq \frac{1}{n}(x_1+x_2+\ldots+x_n).$$

 \rightarrow Remember the arithmetic-geometric inequality

$$(x_1x_2\cdots x_n)^{1/n}\leq \frac{1}{n}(x_1+x_2+\ldots+x_n).$$

 \rightarrow Remember the arithmetic-geometric inequality

$$(x_1x_2\cdots x_n)^{1/n}\leq \frac{1}{n}(x_1+x_2+\ldots+x_n).$$

 \rightarrow Here, (2,2) = $\frac{1}{3}((0,0) + (4,2) + (2,4)).$

 \rightarrow Remember the arithmetic-geometric inequality

$$(x_1x_2\cdots x_n)^{1/n}\leq \frac{1}{n}(x_1+x_2+\ldots+x_n).$$

→ Here, $(2,2) = \frac{1}{3}((0,0) + (4,2) + (2,4)).$ → Hence $x^2y^2 \le \frac{1}{3}(1 + x^4y^2 + x^2y^4)$

 \rightarrow Remember the arithmetic-geometric inequality

$$(x_1x_2\cdots x_n)^{1/n}\leq \frac{1}{n}(x_1+x_2+\ldots+x_n).$$

→ Here, $(2, 2) = \frac{1}{3}((0, 0) + (4, 2) + (2, 4)).$ → Hence $x^2y^2 \le \frac{1}{3}(1 + x^4y^2 + x^2y^4)$ → $1 + x^2y^4 + x^4y^2 - 3x^2y^2 \ge 0$

 \rightarrow We have

 $1 + x^2y^4 + x^4y^2 - 3x^2y^2 \ge 0 \Leftrightarrow 1 + e^{2x+4y} + e^{4x+2y} - 3e^{2x+2y} \ge 0.$

 \rightarrow We have

 $1 + x^2y^4 + x^4y^2 - 3x^2y^2 \ge 0 \Leftrightarrow 1 + e^{2x+4y} + e^{4x+2y} - 3e^{2x+2y} \ge 0.$

 \rightarrow The more general framework of signomials.

\rightarrow We have

 $1 + x^2y^4 + x^4y^2 - 3x^2y^2 \ge 0 \Leftrightarrow 1 + e^{2x+4y} + e^{4x+2y} - 3e^{2x+2y} \ge 0.$

 \rightarrow The more general framework of signomials.

 \rightarrow An AGE signomial is a sum of exponentials of the form

$$f(x) = \sum_{lpha \in \mathcal{A}} c_{lpha} e^{\langle lpha, x
angle} + c_{eta} e^{\langle eta, x
angle}$$

such that $\mathcal{A} \cup \{\beta\} \subset \mathbb{R}^n$, $c_{\alpha} \geq 0$, $c_{\beta} \in \mathbb{R}$, and $f(x) \geq 0$ on \mathbb{R}^n .

 \rightarrow The arithmetic-geometric inequality implies the following criterion:

 \rightarrow The arithmetic-geometric inequality implies the following criterion:

 \rightarrow Let $\mathcal{A} \cup \{\beta\} \subset \mathbb{R}^n$, and

$$f(x) = \sum_{lpha \in \mathcal{A}} c_{lpha} e^{\langle lpha, x
angle} + c_{eta} e^{\langle eta, x
angle}$$

with $c = (c_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_+$ and $c_{\beta} \in \mathbb{R}$.

 \rightarrow The arithmetic-geometric inequality implies the following criterion:

 \rightarrow Let $\mathcal{A} \cup \{\beta\} \subset \mathbb{R}^n$, and

$$f(x) = \sum_{lpha \in \mathcal{A}} c_{lpha} e^{\langle lpha, x
angle} + c_{eta} e^{\langle eta, x
angle}$$

with $c = (c_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_+$ and $c_{\beta} \in \mathbb{R}$.

 \rightarrow Then f is an AGE if and only if there is $\nu = (\nu_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_+$ such that

 \rightarrow The arithmetic-geometric inequality implies the following criterion:

 \rightarrow Let $\mathcal{A} \cup \{\beta\} \subset \mathbb{R}^n$, and

$$f(x) = \sum_{\alpha \in \mathcal{A}} c_{\alpha} e^{\langle \alpha, x \rangle} + c_{\beta} e^{\langle \beta, x \rangle}$$

with $c = (c_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_+$ and $c_{\beta} \in \mathbb{R}$.

 \rightarrow Then f is an AGE if and only if there is $u = (\nu_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_+$ such that

 \rightarrow The arithmetic-geometric inequality implies the following criterion:

 \rightarrow Let $\mathcal{A} \cup \{\beta\} \subset \mathbb{R}^n$, and

$$f(x) = \sum_{\alpha \in \mathcal{A}} c_{\alpha} e^{\langle \alpha, x \rangle} + c_{\beta} e^{\langle \beta, x \rangle}$$

with $c = (c_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_+$ and $c_{\beta} \in \mathbb{R}$.

 \rightarrow Then f is an AGE if and only if there is $u = (\nu_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_+$ such that

• $D(\nu, e \cdot c) \leq c_{\beta}$,

where $D(\nu, e \cdot c) = \sum_{\alpha \in \mathcal{A}} \nu_{\alpha} \ln \left(\frac{\nu_{\alpha}}{e \cdot c_{\alpha}} \right)$ is the relative entropy function.

\rightarrow A SAGE signomial is a sum of AGE signomials.

 \rightarrow A SAGE signomial is a sum of AGE signomials.

 \rightarrow [Murray, Chandrasekaran, Wierman, 2020] Let $\mathcal{A}\cup\mathcal{B}\subset\mathbb{R}^{\textit{n}},$ and

$$f(x) = \sum_{lpha \in \mathcal{A}} c_{lpha} e^{\langle lpha, x
angle} + \sum_{eta \in \mathcal{B}} c_{eta} e^{\langle eta, x
angle}$$

with $c = (c_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_+$ and $c_{\beta} \in \mathbb{R}$ for every $\beta \in \mathcal{B}$.

 \rightarrow A SAGE signomial is a sum of AGE signomials.

 \rightarrow [Murray, Chandrasekaran, Wierman, 2020] Let $\mathcal{A} \cup \mathcal{B} \subset \mathbb{R}^n$, and

$$f(x) = \sum_{lpha \in \mathcal{A}} c_{lpha} e^{\langle lpha, x
angle} + \sum_{eta \in \mathcal{B}} c_{eta} e^{\langle eta, x
angle}$$

with $c = (c_{\alpha}) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $c_{\beta} \in \mathbb{R}$ for every $\beta \in \mathcal{B}$.

 \rightarrow Then f is a SAGE if and only if, for every $\beta \in \mathcal{B}$, there is $c^{(\beta)} = (c^{(\beta)}_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_+$ and $\nu^{(\beta)} = (\nu^{(\beta)}_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_+$ such that

 \rightarrow A SAGE signomial is a sum of AGE signomials.

 \rightarrow [Murray, Chandrasekaran, Wierman, 2020] Let $\mathcal{A}\cup\mathcal{B}\subset\mathbb{R}^{\textit{n}},$ and

$$f(x) = \sum_{lpha \in \mathcal{A}} c_lpha e^{\langle lpha, x
angle} + \sum_{eta \in \mathcal{B}} c_eta e^{\langle eta, x
angle}$$

with $c = (c_{\alpha}) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $c_{\beta} \in \mathbb{R}$ for every $\beta \in \mathcal{B}$.

 \rightarrow Then f is a SAGE if and only if, for every $\beta \in \mathcal{B}$, there is $c^{(\beta)} = (c^{(\beta)}_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_+$ and $\nu^{(\beta)} = (\nu^{(\beta)}_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_+$ such that

(i) $\sum_{\alpha \in \mathcal{A}} \nu_{\alpha}^{(\beta)} \alpha = (\sum_{\alpha \in \mathcal{A}} \nu_{\alpha}^{(\beta)}) \beta$ for $\beta \in \mathcal{B}$,

 \rightarrow A SAGE signomial is a sum of AGE signomials.

 \rightarrow [Murray, Chandrasekaran, Wierman, 2020] Let $\mathcal{A} \cup \mathcal{B} \subset \mathbb{R}^n$, and

$$f(x) = \sum_{lpha \in \mathcal{A}} c_lpha e^{\langle lpha, x
angle} + \sum_{eta \in \mathcal{B}} c_eta e^{\langle eta, x
angle}$$

with $c = (c_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_{\perp}$ and $c_{\beta} \in \mathbb{R}$ for every $\beta \in \mathcal{B}$.

 \rightarrow Then f is a SAGE if and only if, for every $\beta \in \mathcal{B}$, there is $c^{(\beta)} = (c^{(\beta)}_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_{+}$ and $\nu^{(\beta)} = (\nu^{(\beta)}_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_{+}$ such that

- (i) $\sum_{\alpha \in \mathcal{A}} \nu_{\alpha}^{(\beta)} \alpha = (\sum_{\alpha \in \mathcal{A}} \nu_{\alpha}^{(\beta)}) \beta$ for $\beta \in \mathcal{B}$, (ii) $D(\nu^{(\beta)}, e \cdot c^{(\beta)}) \leq c_{\beta}$ for $\beta \in \mathcal{B}$,

 \rightarrow A SAGE signomial is a sum of AGE signomials.

ightarrow [Murray, Chandrasekaran, Wierman, 2020] Let $\mathcal{A} \cup \mathcal{B} \subset \mathbb{R}^n$, and

$$f(x) = \sum_{lpha \in \mathcal{A}} c_{lpha} e^{\langle lpha, x
angle} + \sum_{eta \in \mathcal{B}} c_{eta} e^{\langle eta, x
angle}$$

with $c = (c_{\alpha}) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $c_{\beta} \in \mathbb{R}$ for every $\beta \in \mathcal{B}$.

 \rightarrow Then f is a SAGE if and only if, for every $\beta \in \mathcal{B}$, there is $c^{(\beta)} = (c^{(\beta)}_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_+$ and $\nu^{(\beta)} = (\nu^{(\beta)}_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_+$ such that

(i) $\sum_{\alpha \in \mathcal{A}} \nu_{\alpha}^{(\beta)} \alpha = (\sum_{\alpha \in \mathcal{A}} \nu_{\alpha}^{(\beta)}) \beta$ for $\beta \in \mathcal{B}$, (ii) $D(\nu^{(\beta)}, e \cdot c^{(\beta)}) \leq c_{\beta}$ for $\beta \in \mathcal{B}$, (iii) $\sum_{\beta \in \mathcal{B}} c_{\alpha}^{(\beta)} \leq c_{\alpha}$ for $\alpha \in \mathcal{A}$.

 \rightarrow A SAGE signomial is a sum of AGE signomials.

 \rightarrow [Murray, Chandrasekaran, Wierman, 2020] Let $\mathcal{A}\cup\mathcal{B}\subset\mathbb{R}^{\textit{n}},$ and

$$f(x) = \sum_{lpha \in \mathcal{A}} c_{lpha} e^{\langle lpha, x
angle} + \sum_{eta \in \mathcal{B}} c_{eta} e^{\langle eta, x
angle}$$

with $c = (c_{\alpha}) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $c_{\beta} \in \mathbb{R}$ for every $\beta \in \mathcal{B}$.

 \rightarrow Then f is a SAGE if and only if, for every $\beta \in \mathcal{B}$, there is $c^{(\beta)} = (c^{(\beta)}_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_+$ and $\nu^{(\beta)} = (\nu^{(\beta)}_{\alpha}) \in \mathbb{R}^{\mathcal{A}}_+$ such that

(i) $\sum_{\alpha \in \mathcal{A}} \nu_{\alpha}^{(\beta)} \alpha = (\sum_{\alpha \in \mathcal{A}} \nu_{\alpha}^{(\beta)}) \beta$ for $\beta \in \mathcal{B}$, (ii) $D(\nu^{(\beta)}, e \cdot c^{(\beta)}) \leq c_{\beta}$ for $\beta \in \mathcal{B}$, (iii) $\sum_{\beta \in \mathcal{B}} c_{\alpha}^{(\beta)} \leq c_{\alpha}$ for $\alpha \in \mathcal{A}$.

 \rightarrow Can be solved with relative entropy programming.

Size of the problem

Size of the problem

 $\rightarrow 2|\mathcal{B}||\mathcal{A}|$ variables.

Size of the problem

 $\rightarrow 2|\mathcal{B}||\mathcal{A}|$ variables.

 $\rightarrow n|\mathcal{B}| + |\mathcal{B}| + |\mathcal{A}|$ constraints.

 \rightarrow [M., Naumann, Riener, Theobald, Verdure, 2021⁺]

 \rightarrow [M., Naumann, Riener, Theobald, Verdure, 2021⁺]

 \rightarrow Assume *f* is *G*-invariant.

 \rightarrow [M., Naumann, Riener, Theobald, Verdure, 2021⁺]

- \rightarrow Assume *f* is *G*-invariant.
- \rightarrow Let $\hat{\mathcal{A}}$, $\hat{\mathcal{B}}$ be sets of *G*-representatives.

 \rightarrow [M., Naumann, Riener, Theobald, Verdure, 2021⁺]

- \rightarrow Assume *f* is *G*-invariant.
- \rightarrow Let $\hat{\mathcal{A}}$, $\hat{\mathcal{B}}$ be sets of *G*-representatives.

 \rightarrow Does f have a symmetric decomposition?

 \rightarrow [M., Naumann, Riener, Theobald, Verdure, 2021⁺]

- \rightarrow Assume *f* is *G*-invariant.
- \rightarrow Let $\hat{\mathcal{A}}$, $\hat{\mathcal{B}}$ be sets of *G*-representatives.

- \rightarrow Does *f* have a symmetric decomposition?
- \rightarrow Can we reduce the size of the relative entropy program?

Orbit decomposition

Theorem [M., Naumann, Riener, Theobald, Verdure]

The signomial f is a SAGE if and only if for every $\hat{\beta} \in \hat{\mathcal{B}}$, there exists an AGE signomial $h_{\hat{\beta}}$ such that

$$f = \sum_{\hat{\beta} \in \hat{\mathcal{B}}} \sum_{\rho \in G / \operatorname{Stab}(\hat{\beta})} \rho h_{\hat{\beta}}.$$

The functions $h_{\hat{\beta}}$ can be chosen invariant under the action of $\mathsf{Stab}(\hat{\beta})$.

Theorem [M., Naumann, Riener, Theobald, Verdure]

The signomial f is a SAGE if and only if for every $\hat{\beta} \in \hat{\mathcal{B}}$, there exists an AGE signomial $h_{\hat{\beta}}$ such that

$$f = \sum_{\hat{eta} \in \hat{\mathcal{B}}} \sum_{
ho \in G / \operatorname{Stab}(\hat{eta})}
ho h_{\hat{eta}}.$$

The functions $h_{\hat{\beta}}$ can be chosen invariant under the action of $\mathsf{Stab}(\hat{\beta})$.

 \rightarrow This already reduces the number of AGE signomials in the decomposition.
Theorem [M., Naumann, Riener, Theobald, Verdure]

The signomial f is a SAGE if and only if for every $\hat{\beta} \in \hat{\mathcal{B}}$, there exists an AGE signomial $h_{\hat{\beta}}$ such that

$$f = \sum_{\hat{\beta} \in \hat{\mathcal{B}}} \sum_{\rho \in G / \operatorname{Stab}(\hat{\beta})} \rho h_{\hat{\beta}}.$$

The functions $h_{\hat{\beta}}$ can be chosen invariant under the action of $\mathsf{Stab}(\hat{\beta})$.

 \rightarrow This already reduces the number of AGE signomials in the decomposition.

 \rightarrow Moreover, the invariance under Stab($\hat{\beta}$) allows to further reduce the number of variables and constraints.

Symmetry reduction

Theorem [M., Naumann, Riener, Theobald, Verdure]

The signomial f is a SAGE if and only if for every $\hat{\beta} \in \hat{\mathcal{B}}$, there exist $c^{(\hat{\beta})} \in \mathbb{R}^{\mathcal{A}/\operatorname{Stab}(\hat{\beta})}_+$ and $\nu^{(\hat{\beta})} \in \mathbb{R}^{\mathcal{A}/\operatorname{Stab}(\hat{\beta})}_+$ such that

(i)
$$\sum_{\alpha \in \mathcal{A}/\operatorname{Stab}(\hat{\beta})} \nu_{\alpha}^{(\hat{\beta})} \sum_{\alpha' \in \operatorname{Stab}(\hat{\beta}) \cdot \alpha} (\alpha' - \hat{\beta}) = 0 \quad \forall \hat{\beta} \in \hat{\mathcal{B}},$$

(ii)
$$\sum_{\alpha \in \mathcal{A}/\operatorname{Stab}(\hat{\beta})} \left| \operatorname{Stab}(\hat{\beta}) \cdot \alpha \right| \nu_{\alpha}^{(\hat{\beta})} \ln \frac{\nu_{\alpha}^{(\hat{\beta})}}{\operatorname{ec}_{\alpha}^{(\hat{\beta})}} \leqslant c_{\hat{\beta}} \qquad \forall \ \hat{\beta} \in \hat{\mathcal{B}},$$

(iii) $\sum_{\hat{\beta}\in\hat{\mathcal{B}}}\frac{|\operatorname{Stab}(\alpha)|}{|\operatorname{Stab}(\hat{\beta})|}\sum_{\gamma\in(G\cdot\alpha)/\operatorname{Stab}(\hat{\beta})}\left|\operatorname{Stab}(\hat{\beta})\cdot\gamma\right|c_{\gamma}^{(\hat{\beta})}\leqslant c_{\alpha}\quad\forall\ \alpha\in\hat{\mathcal{A}}.$

 \rightarrow Without reduction: $2|\mathcal{B}||\mathcal{A}|$ variables, $n|\mathcal{B}| + |\mathcal{B}| + |\mathcal{A}|$ constraints.

 \rightarrow Without reduction: $2|\mathcal{B}||\mathcal{A}|$ variables, $n|\mathcal{B}| + |\mathcal{B}| + |\mathcal{A}|$ constraints.

 \rightarrow With reduction:

 \rightarrow Without reduction: $2|\mathcal{B}||\mathcal{A}|$ variables, $n|\mathcal{B}| + |\mathcal{B}| + |\mathcal{A}|$ constraints.

 \rightarrow With reduction:

 $ightarrow 2\sum_{\hat{eta}\in\hat{\mathcal{B}}} |\mathcal{A}/\operatorname{Stab}(\hat{eta})|$ variables.

 \rightarrow Without reduction: $2|\mathcal{B}||\mathcal{A}|$ variables, $n|\mathcal{B}| + |\mathcal{B}| + |\mathcal{A}|$ constraints.

 \rightarrow With reduction:

 $\rightarrow 2\sum_{\hat{\beta}\in\hat{B}} |\mathcal{A}/\operatorname{Stab}(\hat{\beta})|$ variables.

 \rightarrow At most $n|\hat{\mathcal{B}}| + |\hat{\mathcal{B}}| + |\hat{\mathcal{A}}|$ constraints.

A stability result

A stability result

 \rightarrow For $\alpha \in \mathbb{R}^n$, denote by $wt(\alpha)$ its number of non-zero coordinates.

A stability result

 \rightarrow For $\alpha \in \mathbb{R}^n$, denote by $wt(\alpha)$ its number of non-zero coordinates.

Theorem [M., Naumann, Riener, Theobald, Verdure]

Let $k, \ell, w \in \mathbb{N}$ be fixed. Then for every integer $n \ge 2w$ and every S_n -invariant signomial such that $|\hat{\mathcal{A}}| \le k$, $|\hat{\mathcal{B}}| \le \ell$, and

 $\max_{\hat{\gamma}\in\hat{\mathcal{A}}\cup\hat{\mathcal{B}}}\mathsf{wt}(\hat{\gamma})\leqslant w,$

the number of constraints and the number of variables of the symmetry adapted program are bounded by constants only depending of k, ℓ and w:

$$C_n \leq k + \ell + \ell(w+1) \text{ and } V_n \leq 2\ell k u(w),$$

where $u(w) = \sum_{i=0}^{w} {\binom{w}{i}}^2 i!$.

Concrete size comparisons

 \rightarrow Look at some cases with $\hat{\mathcal{A}} = \{0, \hat{\alpha}\}$ and $\hat{\mathcal{B}} = \{\hat{\beta}\}$

 \rightarrow Look at some cases with $\hat{\mathcal{A}} = \{0, \hat{\alpha}\}$ and $\hat{\mathcal{B}} = \{\hat{\beta}\}$

		Stan	Symmetric		
$ \mathcal{S}_n \cdot \hat{\beta} $	$ \mathcal{S}_n \cdot \hat{\alpha} $	V _n	C _n	V _n	Cn
1	<i>n</i> !	2n! + 3	n! + n + 2	5	4
<i>n</i> !	n	2(n+1)n! + 1	(n+1)(n!+1)	2 <i>n</i> + 3	<i>n</i> + 3
<i>n</i> !	<i>n</i> !	2(n!+1)n!+1	n!(n+2)+1	2 <i>n</i> ! + 3	<i>n</i> + 3
n	п	2n(n+1)+1	$(n + 1)^2$	7	5

Numerical results (1/4)

Numerical results (1/4)

$$\rightarrow f_n^{(1)} = \frac{1}{n!} \sum_{\sigma \in S_n} \sigma \exp(\langle \alpha, x \rangle) - \exp(\langle \beta, x \rangle) \text{ where } \beta = (1, \dots, 1) \text{ and } \alpha = (1, 2, \dots, n).$$

			Stan	dard metho	Symmetric method				
dim	bound	V_n	C_n	t_s	t_r	V_n	C_n	t_s	t_r
2	-0.1481	7	6	0.0113	0.0121	5	4	0.0147	0.0158
3	-0.2499	15	11	0.0148	0.0160	5	4	0.0141	0.0149
4	-0.3257	51	30	0.0304	0.0337	5	4	0.0139	0.0147
5	-0.3849	243	127	-	-	5	4	0.0140	0.0147
6	-0.4327	1443	728	-	-	5	4	0.0136	0.0144
7	-0.4724*	10083	5049	_	-	5	4	0.0211	0.0222

Numerical results (2/4)

Numerical results (2/4)

$$\rightarrow f_n^{(2)} = (n-1)! \sum_{i=1}^n \exp(n^2 x_i) - \sum_{\sigma \in S_n} \sigma \exp(\langle \beta, x \rangle), \text{ where } \\ \beta = (1, 2, \dots, n), \text{ and } \alpha = (n^2, 0, \dots, 0).$$

			Standar		S	ymm	etric me	thod	
dim	bound	V_n	C_n	t_s	t_r	V_n	C_n	t_s	t_r
2	-0.2109	13	9	0.0173	0.0185	7	5	0.0297	0.0311
3	-0.8888	49	28	0.0427	0.0454	9	6	0.0248	0.0264
4	-4.111	241	125	0.152	0.1701	11	7	0.0296	0.0318
5	-22.30	1441	726	0.7888	0.8433	13	8	0.0356	0.0384
6	-141.0	10081	5047	5.422	5.843	15	9	0.0423	0.0458
7	-1024	80641	40328	57.26	66.67	17	10	0.0491	0.0538
8	-8418	725761	362889	1514	2211	19	11	0.0568	0.0626
9	-77355	7257601	3628810	-	-	21	12	0.0661	0.0835
10		79833601	39916811	-	-	23	13	_	-

Numerical results (3/4)

Numerical results (3/4)

$$\rightarrow f_n^{(3)} = \frac{1}{n} \sum_{\sigma \in S_n} \exp(\langle \alpha, x \rangle) - \frac{1}{n} \sum_{\sigma \in S_n} \sigma \exp(\langle \beta, x \rangle), \text{ where } \\ \beta = (1, 2, \dots, n) \text{ and } \alpha = (2, 8, \dots, 2n^2).$$

			Symmetric method						
dim	bound	V_n	C_n	t_s	t_r	V_n	C_n	t_s	t_r
2	-0.4178	13	9	0.0301	0.0323	7	5	0.0431	0.0465
3	-1.0323	85	31	0.0558	0.0603	15	6	0.0531	0.0569
4	-3.494	1201	145	—	-	51	7	0.1212	0.1301
5	-15.13	29041	841	—	-	243	8	0.5750	0.6215
6		1038241	5761	—	-	1443	9	_	-

Numerical results (4/4)

$$\rightarrow f_n^{(4)} = \frac{1}{n} \sum_{i=1}^n \exp(n^2 x_i) - \frac{1}{n} \sum_{i=1}^n \exp((n-1)(x_1 + \dots + x_n) + x_i),$$

where $\beta = (n, n-1, n-1, \dots, n-1)$ and $\alpha = (n^2, 0, \dots, 0).$

			Standard method					Symmetric method			
dim	bound	V_n	C_n	t_s	t_r	V_n	C_n	t_s	t_r		
2	-0.1054	13	9	0.01901	0.0204	7	5	0.0213	0.0229		
3	-0.092	25	16	0.0268	0.0287	7	5	0.0205	0.0218		
4	-0.076	41	25	0.0341	0.0367	7	5	0.0205	0.0218		
68	-0.0053	9385	4761	—	_	7	5	0.0475	0.0519		
95	-0.0038*	18241	9216	—	_	7	5	0.0267	0.0281		

