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Symmetric situations in polynomial optimization

e Symmetric systems of equations:
How symmetric is the set of solutions?

— An analogue of the degree principle using combinatorics of S,.

e Symmetry reduction in SAGE certificates:
How to use symmetries for computing certificates?
— Orbit reduction of relative entropy programs.



Symmetric Polynomial Optimization Problems

Let P be a polynomial defined over R”, invariant under variable
permutations.

How to find the minimum of P on R"?



Symmetric Polynomial Optimization Problems

Let P be a polynomial defined over R”, invariant under variable
permutations.

How to find the minimum of P on R"?

e Idea 1: Compute the critical points of P.

— Solve a symmetric polynomial system.



Symmetric Polynomial Optimization Problems

Let P be a polynomial defined over R”, invariant under variable
permutations.

How to find the minimum of P on R"?

e Idea 1: Compute the critical points of P.
— Solve a symmetric polynomial system.

e |dea 2: Look for the largest A such that P — X is non-negative on R".
— Optimize over subcones of the non-negativity cone.



Symmetric Polynomial Optimization Problems

Let P be a polynomial defined over R”, invariant under variable
permutations.

How to find the minimum of P on R"?

e Idea 1: Compute the critical points of P.
— Solve a symmetric polynomial system.

e |dea 2: Look for the largest A such that P — X is non-negative on R".
— Optimize over subcones of the non-negativity cone.

These two approaches are computationally expensive.



Symmetric Polynomial Optimization Problems

Let P be a polynomial defined over R”, invariant under variable
permutations.

How to find the minimum of P on R"?

e Idea 1: Compute the critical points of P.
— Solve a symmetric polynomial system.

e |dea 2: Look for the largest A such that P — X is non-negative on R".
— Optimize over subcones of the non-negativity cone.

These two approaches are computationally expensive.

How to exploit symmetries using group theory and combinatorics?
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POP: Origin of Symmetry

Does a symmetric polynomial have symmetric minimizers?

— Not in general:

F(x,y) = (6 +(y = 1)°)((x = 1) +y?)

is symmetric, non-negative, and its only zeros are (1,0) and (0, 1).

— Are there any situations in which the set of minimizers contains highly
symmetric points?
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A degree principle

The half-degree principle (Timofte, 2003, revisited by Riener, 2012) says:

— Let K be a real closed field, and let P be a polynomial in n variables of
degree d, invariant under the action of the symmetric group.

— Let k = max(2, LgJ)

— Then there exists x € K" such that P(x) = 0 if and only if there exists
y € K" with at most k distinct coordinates such that P(y) = 0.

— From a geometric point of view: the corresponding variety is non empty
if and only if it contains a point with at most k distinct coordinates.
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Consequence on polynomial systems

— Now assume we want to solve the polynomial system
Pi=P,=...=P, =0,

where S, permutes the P;’s. Let | = (P1,...,P,), and V/(/) the

associated variety.

— Let d = max(deg(P1),...,deg(P,)).

— Over a real closed field, V/(/) is non empty, if and only if it contains a
point with at most d distinct coordinates.

— Indeed, these solutions are the zeroes of the symmetric polynomial
0=y 7
O'ESn
— [M., Riener, Verdure, 2021]: A combinatorial analogue of this result
depending on the leading monomials of the P;'s.
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Algorithmic consequences: System of a down complexity

— Up to permutation, every x € R" is of the form

X = (Xiyoooy X1, X2y e e ey X2y e e ).
—_—— Y——
A1 A2
— The partition A(x) := (A1, A2, -+, \x) F nis called the orbit type of x.
— Then if x is a zero of P, the point X = (x1, %2, ..., %) € R¥ is a zero of
PNZy, Zo,.... 7)) =P(Z1,.... 21, 2s,...,20,..., )
A1 A2

— Degree principle — Only look at k < d.
— At most (n + 1)9 equivalent problems in d variables!

— [M., Riener, Verdure, 2021]: Which orbit types for the solutions?
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Partitions and tableaux

— A partition A F n might be represented by a tableau: For (4,3,1) F 8,
|

— The dual partition is given by (A ) 1, Aj =i}l

— X\ dominates p if for every i, Z}:l Aj = Zj’:l g

| >
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Specht Odyssey

— A Young tableau of shape  F nis a tableau T of shape u filled-in with
numbers from 1 to n.

N

1]

[w]oo] &
~

— The Specht polynomial spy associated with T is the product of the

column Vandermonde determinants

spr = (Xa — Xg)(Xa — X3)(Xs — X3)(X2 — X7)

— The u-Specht ideal: ;P := (spy, T of shape p) C K[Xi,...,X,].
— The u-Specht variety: V,, = V(I;°).

— : For x e K", x ¢ V/\(x): xa[xaxafx]

Xx2[x2[x2

10
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Comparison of Specht ideals

Theorem [M., Riener, Verdure]

For A, i partitions of n,

sp sp
FClPeV,CVhe
— Corollary: Characterization with orbit types:

V

©
=(Um) =Un

A vAp

— Consequence: If [ is a symmetric ideal and /;° C I, then

V() c Vu=J Ho-
vAp

— Only look at points x with A(x) € p!
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— Let P € I, of degree d. Let Py be the component of P of degree d.
— The weight wt(Py) of Py: the number of variables appearing in Py.

— Assume wt(Py) = ¢ with £+ d < n. To a monomial m = Xl’\lX;Q : Xe)“"

of Py, where \;1 > Ap > ... > Ay we associate the partition

p(m) =1+ 1,2 +1,..., A +11,...,1).
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Specht polynomials in symmetric ideals

— Given a symmetric ideal /, what are the Specht ideals contained in /7
— Let P € I, of degree d. Let Py be the component of P of degree d.
— The weight wt(Py) of Py: the number of variables appearing in Py.

— Assume wt(Py) = ¢ with £+ d < n. To a monomial m = Xl’\lX;Q : Xe)“Z

of Py, where \;1 > Ap > ... > Ay we associate the partition

p(m) =1+ 1,2 +1,..., A +11,...,1).

i
T
35

Theorem [M., Riener, Verdure]

iy <1
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Consequences

— Geometrically, this gives:

V(NN Hy=0 forall A < pu(m)*t

— If len(\) > d, then A < u(m)*.

— So any point in V(/) has at most d distinct coordinates...

— We recover (at least) the degree principle! And even more:

— V() contains no point in with more than d distinct coordinates.

— The dimension of the variety is at most d.

13
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Non-negative certificates: Here cones the sun

— Recall: to get a lower bound on the minimum of P, find X such that
P—X>0.

— However, it is hard to decide if a polynomial belongs to the cone of

non-negative polynomials.
— |dea: Use subcones that are easier to characterize algorithmically.
— The most famous of them is the cone of Sums Of Squares.
— There exist non-negative polynomials that are not sums of squares.
— Example: the Motzkin polynomial,

1+ ><2y4 F ><4y2 — 3x2y2
— What about other certificates?
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SAGE against the Motzkin

— Remember the arithmetic-geometric inequality

1
(xaxz - xn) /" < SOa e+ x).

2

— Here, (2,2) = 3((0,0) + (4,2) + (2,4)).
— Hence x?y? < %(1 + x*y? + x2y4)
— 14+ x%y* +x*y% —3x%y? >0
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AGE functions

— We have

14+ x2y% + x*y2 —3x2)2 > 0 1 4 2 4 &2y _ 3e2F2y >

— The more general framework of signomials.

— An AGE signomial is a sum of exponentials of the form

f(x) = Z el + Cge<5’x>
acA

such that AU {8} CR", ¢, >0, cg € R, and on R".
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Non-negativity criterion

— The arithmetic-geometric inequality implies the following criterion:
— Let AU{S} C R", and

f(x) = Z el + CBe<B’X>
acA

with ¢ = (c,) € RY and ¢g € R.

— Then f is an if and only if there is v = (v,) € Rﬁ such that

® DacaVa= (2 va)f

acA

e D(v,e-c) < cg,

where D(v,e-c) = > caValn (e’fga> is the relative entropy function.
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SAGE functions

— A SAGE signomial is a sum of AGE signomials.

— [Murray, Chandrasekaran, Wierman, 2020] Let AU B C R”, and
f(x) = Z cu el + Z cﬁew’X>
acA BEB
with ¢ = (c,) € R7 and ¢z € R for every 3 € B.

— Then f is a if and only if, for every 3 € B, there is
cB) = (cc(fg)) € R4 and v(¥) = (y&ﬁ)) € Ry such that

i TwWa = ()8 frpes,

acA acA
(i) DWW,e-cB)) < ¢z for BeB,

(iif) S < e foraceA
BeEB

— Can be solved with relative entropy programming.
18
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Size of the problem

Zn CC()‘Sl)e<G"X> + Cﬁle<Bl"X> Z(y C((fz)e<0‘$><> + Cﬁze<ﬂ2’x> Zn C((fS)e(@,X) + Cﬁ3e<53’x>

— 2|B||.A| variables.

— n|B| + |B| + |A| constraints. 19
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What about symmetries?

— [M., Naumann, Riener, Theobald, Verdure, 2021"]
— Assume f is G-invariant.

— Let /i B be sets of G-representatives.

’

-

(s
e

— Does f have a symmetric decomposition?

— Can we reduce the size of the relative entropy program?

20
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Orbit decomposition

Theorem [M., Naumann, Riener, Theobald, Verdure]

The signomial f is a if and only if for every BA € B, there exists an
AGE signomial hB such that

f—z > phy

B pe G/ Stab(/3)

The functions hj can be chosen invariant under the action of Stab(f3).
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Orbit decomposition

Theorem [M., Naumann, Riener, Theobald, Verdure]

The signomial f is a if and only if for every BA € B, there exists an
AGE signomial hB such that

f_z > phy

B pe G/ Stab(/3)

The functions hj can be chosen invariant under the action of Stab(f3).

— This already reduces the number of AGE signomials in the
decomposition.

— Moreover, the invariance under Stab(@) allows to further reduce the
number of variables and constraints.

21
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Symmetry reduction

Theorem [M., Naumann, Riener, Theobald, Verdure]

The signomial f is a if and only if for every B € B, there exist
c® € RS20 ang B) € R 59D guch that

- %) - o
(i) ZaE.A/ Stab(B) Yo Za’eStab(B).a(O/ —-p)=0 V5eB
.. A (B) u((f?) A ~

(i1) 2 oaeasstab(d) ‘Stab(ﬁ) o vg In o < ¢ vV BeEB,

| Stab(a < ¢ Vace A

(/3’)
(i) > pe8 [swn(d) Zve G-a)/ Stab(B) ‘Stab el
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— Without reduction: 2|B||.A| variables, n|B| + |B| + |.A| constraints.
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— Without reduction: 2|B||.A| variables, n|B| + |B| + |.A| constraints.

— With reduction:

— 2> aeplA/ Stab(3)| variables.

— At most n|B| + |B| + |A| constraints.
23
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A stability result

— For aw € R", denote by its number of non-zero coordinates.
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A stability result

— For aw € R", denote by its number of non-zero coordinates.

Theorem [M., Naumann, Riener, Theobald, Verdure]

Let k, ¢, w € N be fixed. Then for every integer and every
Sp-invariant signomial such that [A| < k, |B| < ¢, and

the number of constraints and the number of variables of the symmetry
adapted program are bounded by constants only depending of k, ¢ and

Co<k+0+1 and V, <20k ,

where

24
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— Look at some cases with A = {0,4} and B = {3}
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Concrete size comparisons

— Look at some cases with A = {0,4} and B = {3}

Standard Symmetric
S0 Bl | 18n - & V, Co V, Ca
1 n! 2n! 43 nl'+n+2 5 4
n! n 2(n+1nl+1 | (n+1)(n!+1) | 2n+3 | n+3
n! n! 2(n+1)nl+1| nl(n+2)+1 | 2n1+3 | n+3
n n 2n(n+1)+1 (n+1)2 7 5

25
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Numerical results (1/4)

0 = 3 o expl{a X)) — exp({8,x)) where = (L,...., 1) and
a=(1,2,...,n).

Standard method Symmetric method

dim | bound | Cn ts tr Vo | Cn ts tr
2 -0.1481 7 6 0.0113 0.0121 || 5 4 ] 0.0147 | 0.0158
3 -0.2499 5 11 0.0148 0.0160 || 5 4 | 0.0141 | 0.0149
4 -0.3257 51 30 0.0304 0.0337 || 5 4 1 0.0139 | 0.0147
5 -0.3849 243 127 — — 5 4 ] 0.0140 | 0.0147
6 -0.4327 1443 | 728 — — 5 4 ] 0.0136 | 0.0144
7 ] -0.4724* || 10083 | 5049 — — 5 4 1 0.0211 | 0.0222
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Numerical results (2/4)
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Numerical results (2/4)

— f,,(2) =(=-1)>", exp(n2x,-) = Zaesn o exp({f, x)), where
B=(1,2,...,n), and a = (n?,0,...,0).

Standard method Symmetric method

dim | bound Vi C, ts t, Vo | Cn ts tr
2 | -0.2109 13 9 0.0173 0.0185 || 7 5 | 0.0297 | 0.0311
3 | -0.8888 49 28 0.0427 0.0454 || 9 6 | 0.0248 | 0.0264
4 -4.111 241 125 0.152 0.1701 || 11 | 7 | 0.0296 | 0.0318
5 -22.30 1441 726 0.7888 0.8433 || 13 | 8 | 0.0356 | 0.0384
6 -141.0 10081 5047 5.422 5.843 15 | 9 | 0.0423 | 0.0458
7 -1024 80641 40328 57.26 66.67 17 | 10 | 0.0491 | 0.0538
8 -8418 725761 362889 | 1514 2211 19 | 11 | 0.0568 | 0.0626
9 -77355 7257601 | 3628810 — — 21 | 12 | 0.0661 | 0.0835

10 79833601 | 39916811 - - 23 | 13 - -
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Numerical results (3/4)
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Numerical results (3/4)

= £ = 55 e, @p((@0 X)) = £ Yoes, 7 oxp((8,x)), where
B=(1,2,...,n) and a = (2,8,...,2n%).

Standard method Symmetric method

dim | bound Vn Cp ts t, Vi C, ts t,
2 | -0.4178 13 9 0.0301 0.0323 7 5 | 0.0431 | 0.0465
3 | -1.0323 85 31 0.0558 0.0603 15 6 | 0.0531 | 0.0569
4 -3.494 1201 145 — — 51 7 10.1212 | 0.1301
5 -15.13 29041 841 — — 243 8 | 0.5750 | 0.6215

6 1038241 | 5761 — — 1443 | 9 — =

28



Numerical results (4/4)
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Numerical results (4/4)

= £ = L S ep(mx) — § Sy exp((n = 1)(xa + -+ x) + ),
where 3= (n,n—1,n—1,...,n—1) and a = (n?,0,...,0).

Standard method Symmetric method

dim | bound Vo Cn ts t, Vo | Cn ts tr
2 -0.1054 13 9 0.01901 0.0204 || 7 5 | 0.0213 | 0.0229
3 -0.092 25 16 0.0268 0.0287 || 7 5 1 0.0205 | 0.0218
4 -0.076 41 25 0.0341 0.0367 || 7 5 | 0.0205 | 0.0218
68 | -0.0053 9385 | 4761 = = 7 5 | 0.0475 | 0.0519
95 | -0.0038* || 18241 | 9216 — — 7 5 1 0.0267 | 0.0281
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Thank you!




