Symmetric situations in polynomial optimization

Philippe Moustrou, UiT - The Arctic University of Norway
POLSYS Seminar - February 26, 2021

Tromsø: the $P^{\prime} / \omega_{1} f^{\prime} /{ }^{\prime}{ }^{\prime}$ Bordeaux of the North

Contents

Symmetric situations in polynomial optimization

Contents

Symmetric situations in polynomial optimization

- Symmetric systems of equations:

Contents

Symmetric situations in polynomial optimization

- Symmetric systems of equations:

How symmetric is the set of solutions?

Contents

Symmetric situations in polynomial optimization

- Symmetric systems of equations:

How symmetric is the set of solutions?
\rightarrow An analogue of the degree principle using combinatorics of \mathcal{S}_{n}.

Contents

Symmetric situations in polynomial optimization

- Symmetric systems of equations:

How symmetric is the set of solutions?
\rightarrow An analogue of the degree principle using combinatorics of \mathcal{S}_{n}.

- Symmetry reduction in SAGE certificates:

Contents

Symmetric situations in polynomial optimization

- Symmetric systems of equations:

How symmetric is the set of solutions?
\rightarrow An analogue of the degree principle using combinatorics of \mathcal{S}_{n}.

- Symmetry reduction in SAGE certificates:

How to use symmetries for computing certificates?

Contents

Symmetric situations in polynomial optimization

- Symmetric systems of equations:

How symmetric is the set of solutions?
\rightarrow An analogue of the degree principle using combinatorics of \mathcal{S}_{n}.

- Symmetry reduction in SAGE certificates:

How to use symmetries for computing certificates?
\rightarrow Orbit reduction of relative entropy programs.

Symmetric Polynomial Optimization Problems

Let P be a polynomial defined over \mathbb{R}^{n}, invariant under variable permutations.

How to find the minimum of P on \mathbb{R}^{n} ?

Symmetric Polynomial Optimization Problems

Let P be a polynomial defined over \mathbb{R}^{n}, invariant under variable permutations.

How to find the minimum of P on \mathbb{R}^{n} ?

- Idea 1: Compute the critical points of P.
\rightarrow Solve a symmetric polynomial system.

Symmetric Polynomial Optimization Problems

Let P be a polynomial defined over \mathbb{R}^{n}, invariant under variable permutations.

How to find the minimum of P on \mathbb{R}^{n} ?

- Idea 1: Compute the critical points of P.
\rightarrow Solve a symmetric polynomial system.
- Idea 2: Look for the largest λ such that $P-\lambda$ is non-negative on \mathbb{R}^{n}.
\rightarrow Optimize over subcones of the non-negativity cone.

Symmetric Polynomial Optimization Problems

Let P be a polynomial defined over \mathbb{R}^{n}, invariant under variable permutations.

How to find the minimum of P on \mathbb{R}^{n} ?

- Idea 1: Compute the critical points of P.
\rightarrow Solve a symmetric polynomial system.
- Idea 2: Look for the largest λ such that $P-\lambda$ is non-negative on \mathbb{R}^{n}.
\rightarrow Optimize over subcones of the non-negativity cone.
These two approaches are computationally expensive.

Symmetric Polynomial Optimization Problems

Let P be a polynomial defined over \mathbb{R}^{n}, invariant under variable permutations.

How to find the minimum of P on \mathbb{R}^{n} ?

- Idea 1: Compute the critical points of P.
\rightarrow Solve a symmetric polynomial system.
- Idea 2: Look for the largest λ such that $P-\lambda$ is non-negative on \mathbb{R}^{n}.
\rightarrow Optimize over subcones of the non-negativity cone.

These two approaches are computationally expensive.
How to exploit symmetries using group theory and combinatorics?

POP: Origin of Symmetry

Does a symmetric polynomial have symmetric minimizers?

POP: Origin of Symmetry

Does a symmetric polynomial have symmetric minimizers?
\rightarrow Not in general:

$$
f(x, y)=\left(x^{2}+(y-1)^{2}\right)\left((x-1)^{2}+y^{2}\right)
$$

is symmetric, non-negative, and its only zeros are $(1,0)$ and $(0,1)$.

POP: Origin of Symmetry

Does a symmetric polynomial have symmetric minimizers?
\rightarrow Not in general:

$$
f(x, y)=\left(x^{2}+(y-1)^{2}\right)\left((x-1)^{2}+y^{2}\right)
$$

is symmetric, non-negative, and its only zeros are $(1,0)$ and $(0,1)$.
\rightarrow Are there any situations in which the set of minimizers contains highly symmetric points?

A degree principle

The half-degree principle (Timofte, 2003, revisited by Riener, 2012) says:

A degree principle

The half-degree principle (Timofte, 2003, revisited by Riener, 2012) says:
\rightarrow Let \mathbb{K} be a real closed field, and let P be a polynomial in n variables of degree d, invariant under the action of the symmetric group.

A degree principle

The half-degree principle (Timofte, 2003, revisited by Riener, 2012) says:
\rightarrow Let \mathbb{K} be a real closed field, and let P be a polynomial in n variables of degree d, invariant under the action of the symmetric group.
\rightarrow Let $k=\max \left(2,\left\lfloor\frac{d}{2}\right\rfloor\right)$.

A degree principle

The half-degree principle (Timofte, 2003, revisited by Riener, 2012) says:
\rightarrow Let \mathbb{K} be a real closed field, and let P be a polynomial in n variables of degree d, invariant under the action of the symmetric group.
\rightarrow Let $k=\max \left(2,\left\lfloor\frac{d}{2}\right\rfloor\right)$.
\rightarrow Then there exists $x \in \mathbb{K}^{n}$ such that $P(x)=0$ if and only if there exists $y \in \mathbb{K}^{n}$ with at most k distinct coordinates such that $P(y)=0$.

A degree principle

The half-degree principle (Timofte, 2003, revisited by Riener, 2012) says:
\rightarrow Let \mathbb{K} be a real closed field, and let P be a polynomial in n variables of degree d, invariant under the action of the symmetric group.
\rightarrow Let $k=\max \left(2,\left\lfloor\frac{d}{2}\right\rfloor\right)$.
\rightarrow Then there exists $x \in \mathbb{K}^{n}$ such that $P(x)=0$ if and only if there exists $y \in \mathbb{K}^{n}$ with at most k distinct coordinates such that $P(y)=0$.
\rightarrow From a geometric point of view: the corresponding variety is non empty if and only if it contains a point with at most k distinct coordinates.

Consequence on polynomial systems

Consequence on polynomial systems

\rightarrow Now assume we want to solve the polynomial system

$$
P_{1}=P_{2}=\ldots=P_{r}=0
$$

where \mathcal{S}_{n} permutes the P_{i} 's. Let $I=\left\langle P_{1}, \ldots, P_{r}\right\rangle$, and $V(I)$ the associated variety.

Consequence on polynomial systems

\rightarrow Now assume we want to solve the polynomial system

$$
P_{1}=P_{2}=\ldots=P_{r}=0
$$

where \mathcal{S}_{n} permutes the P_{i} 's. Let $I=\left\langle P_{1}, \ldots, P_{r}\right\rangle$, and $V(I)$ the associated variety.
\rightarrow Let $d=\max \left(\operatorname{deg}\left(P_{1}\right), \ldots, \operatorname{deg}\left(P_{r}\right)\right)$.

Consequence on polynomial systems

\rightarrow Now assume we want to solve the polynomial system

$$
P_{1}=P_{2}=\ldots=P_{r}=0
$$

where \mathcal{S}_{n} permutes the P_{i} 's. Let $I=\left\langle P_{1}, \ldots, P_{r}\right\rangle$, and $V(I)$ the associated variety.
\rightarrow Let $d=\max \left(\operatorname{deg}\left(P_{1}\right), \ldots, \operatorname{deg}\left(P_{r}\right)\right)$.
\rightarrow Over a real closed field, $V(I)$ is non empty, if and only if it contains a point with at most d distinct coordinates.

Consequence on polynomial systems

\rightarrow Now assume we want to solve the polynomial system

$$
P_{1}=P_{2}=\ldots=P_{r}=0
$$

where \mathcal{S}_{n} permutes the P_{i} 's. Let $I=\left\langle P_{1}, \ldots, P_{r}\right\rangle$, and $V(I)$ the associated variety.
\rightarrow Let $d=\max \left(\operatorname{deg}\left(P_{1}\right), \ldots, \operatorname{deg}\left(P_{r}\right)\right)$.
\rightarrow Over a real closed field, $V(I)$ is non empty, if and only if it contains a point with at most d distinct coordinates.
\rightarrow Indeed, these solutions are the zeroes of the symmetric polynomial

$$
Q=\sum_{\sigma \in \mathcal{S}_{n}} P_{i}^{2}
$$

Consequence on polynomial systems

\rightarrow Now assume we want to solve the polynomial system

$$
P_{1}=P_{2}=\ldots=P_{r}=0
$$

where \mathcal{S}_{n} permutes the P_{i} 's. Let $I=\left\langle P_{1}, \ldots, P_{r}\right\rangle$, and $V(I)$ the associated variety.
\rightarrow Let $d=\max \left(\operatorname{deg}\left(P_{1}\right), \ldots, \operatorname{deg}\left(P_{r}\right)\right)$.
\rightarrow Over a real closed field, $V(I)$ is non empty, if and only if it contains a point with at most d distinct coordinates.
\rightarrow Indeed, these solutions are the zeroes of the symmetric polynomial

$$
Q=\sum_{\sigma \in \mathcal{S}_{n}} P_{i}^{2}
$$

\rightarrow [M., Riener, Verdure, 2021]: A combinatorial analogue of this result depending on the leading monomials of the P_{i} 's.

Algorithmic consequences: System of a down complexity

Algorithmic consequences: System of a down complexity

\rightarrow Up to permutation, every $x \in \mathbb{R}^{n}$ is of the form

$$
x=(\underbrace{x_{1}, \ldots, x_{1}}_{\lambda_{1}}, \underbrace{x_{2}, \ldots, x_{2}}_{\lambda_{2}}, \ldots, \underbrace{x_{k}, \ldots, x_{k}}_{\lambda_{k}}) .
$$

Algorithmic consequences: System of a down complexity

\rightarrow Up to permutation, every $x \in \mathbb{R}^{n}$ is of the form

$$
x=(\underbrace{x_{1}, \ldots, x_{1}}_{\lambda_{1}}, \underbrace{x_{2}, \ldots, x_{2}}_{\lambda_{2}}, \ldots, \underbrace{x_{k}, \ldots, x_{k}}_{\lambda_{k}}) .
$$

\rightarrow The partition $\Lambda(x):=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}\right) \vdash n$ is called the orbit type of x.

Algorithmic consequences: System of a down complexity

\rightarrow Up to permutation, every $x \in \mathbb{R}^{n}$ is of the form

$$
x=(\underbrace{x_{1}, \ldots, x_{1}}_{\lambda_{1}}, \underbrace{x_{2}, \ldots, x_{2}}_{\lambda_{2}}, \ldots, \underbrace{x_{k}, \ldots, x_{k}}_{\lambda_{k}}) .
$$

\rightarrow The partition $\Lambda(x):=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}\right) \vdash n$ is called the orbit type of x.
\rightarrow Then if x is a zero of P, the point $\tilde{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \mathbb{R}^{k}$ is a zero of

$$
P^{\lambda}\left(Z_{1}, Z_{2}, \ldots, Z_{k}\right)=P(\underbrace{Z_{1}, \ldots, Z_{1}}_{\lambda_{1}}, \underbrace{Z_{2}, \ldots, Z_{2}}_{\lambda_{2}}, \ldots, \underbrace{Z_{k}, \ldots, Z_{k}}_{\lambda_{k}})
$$

Algorithmic consequences: System of a down complexity

\rightarrow Up to permutation, every $x \in \mathbb{R}^{n}$ is of the form

$$
x=(\underbrace{x_{1}, \ldots, x_{1}}_{\lambda_{1}}, \underbrace{x_{2}, \ldots, x_{2}}_{\lambda_{2}}, \ldots, \underbrace{x_{k}, \ldots, x_{k}}_{\lambda_{k}})
$$

\rightarrow The partition $\Lambda(x):=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}\right) \vdash n$ is called the orbit type of x.
\rightarrow Then if x is a zero of P, the point $\tilde{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \mathbb{R}^{k}$ is a zero of

$$
P^{\lambda}\left(Z_{1}, Z_{2}, \ldots, Z_{k}\right)=P(\underbrace{Z_{1}, \ldots, Z_{1}}_{\lambda_{1}}, \underbrace{Z_{2}, \ldots, Z_{2}}_{\lambda_{2}}, \ldots, \underbrace{Z_{k}, \ldots, Z_{k}}_{\lambda_{k}})
$$

\rightarrow Degree principle \rightarrow Only look at $k \leq d$.

Algorithmic consequences: System of a down complexity

\rightarrow Up to permutation, every $x \in \mathbb{R}^{n}$ is of the form

$$
x=(\underbrace{x_{1}, \ldots, x_{1}}_{\lambda_{1}}, \underbrace{x_{2}, \ldots, x_{2}}_{\lambda_{2}}, \ldots, \underbrace{x_{k}, \ldots, x_{k}}_{\lambda_{k}})
$$

\rightarrow The partition $\Lambda(x):=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}\right) \vdash n$ is called the orbit type of x.
\rightarrow Then if x is a zero of P, the point $\tilde{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \mathbb{R}^{k}$ is a zero of

$$
P^{\lambda}\left(Z_{1}, Z_{2}, \ldots, Z_{k}\right)=P(\underbrace{Z_{1}, \ldots, Z_{1}}_{\lambda_{1}}, \underbrace{Z_{2}, \ldots, Z_{2}}_{\lambda_{2}}, \ldots, \underbrace{Z_{k}, \ldots, Z_{k}}_{\lambda_{k}})
$$

\rightarrow Degree principle \rightarrow Only look at $k \leq d$.
\rightarrow At most $(n+1)^{d}$ equivalent problems in d variables!

Algorithmic consequences: System of a down complexity

\rightarrow Up to permutation, every $x \in \mathbb{R}^{n}$ is of the form

$$
x=(\underbrace{x_{1}, \ldots, x_{1}}_{\lambda_{1}}, \underbrace{x_{2}, \ldots, x_{2}}_{\lambda_{2}}, \ldots, \underbrace{x_{k}, \ldots, x_{k}}_{\lambda_{k}})
$$

\rightarrow The partition $\Lambda(x):=\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{k}\right) \vdash n$ is called the orbit type of x.
\rightarrow Then if x is a zero of P, the point $\tilde{x}=\left(x_{1}, x_{2}, \ldots, x_{k}\right) \in \mathbb{R}^{k}$ is a zero of

$$
P^{\lambda}\left(Z_{1}, Z_{2}, \ldots, Z_{k}\right)=P(\underbrace{Z_{1}, \ldots, Z_{1}}_{\lambda_{1}}, \underbrace{Z_{2}, \ldots, Z_{2}}_{\lambda_{2}}, \ldots, \underbrace{Z_{k}, \ldots, Z_{k}}_{\lambda_{k}})
$$

\rightarrow Degree principle \rightarrow Only look at $k \leq d$.
\rightarrow At most $(n+1)^{d}$ equivalent problems in d variables!
\rightarrow [M., Riener, Verdure, 2021]: Which orbit types for the solutions?

Partitions and tableaux

\rightarrow A partition $\lambda \vdash n$ might be represented by a tableau: For $(4,3,1) \vdash 8$,

Partitions and tableaux

\rightarrow A partition $\lambda \vdash n$ might be represented by a tableau: For $(4,3,1) \vdash 8$,

\rightarrow The dual partition is given by $\left(\lambda^{\perp}\right)_{i}=\left|\left\{j, \lambda_{j} \geqslant i\right\}\right|$:

Partitions and tableaux

\rightarrow A partition $\lambda \vdash n$ might be represented by a tableau: For $(4,3,1) \vdash 8$,

\rightarrow The dual partition is given by $\left(\lambda^{\perp}\right)_{i}=\left|\left\{j, \lambda_{j} \geqslant i\right\}\right|$:

$\rightarrow \lambda$ dominates μ if for every $i, \sum_{j=1}^{i} \lambda_{j} \geqslant \sum_{j=1}^{i} \mu_{j}$:

Specht Odyssey

Specht Odyssey

\rightarrow A Young tableau of shape $\mu \vdash n$ is a tableau T of shape μ filled-in with numbers from 1 to n.

4	2	6	1
8	7	5	
3			

Specht Odyssey

\rightarrow A Young tableau of shape $\mu \vdash n$ is a tableau T of shape μ filled-in with numbers from 1 to n.

4	2	6	1
8	7	5	
3			

\rightarrow The Specht polynomial sp_{T} associated with T is the product of the column Vandermonde determinants

$$
\mathrm{sp}_{T}=\left(X_{4}-X_{8}\right)\left(X_{4}-X_{3}\right)\left(X_{8}-X_{3}\right)\left(X_{2}-X_{7}\right)\left(X_{6}-X_{5}\right)
$$

Specht Odyssey

\rightarrow A Young tableau of shape $\mu \vdash n$ is a tableau T of shape μ filled-in with numbers from 1 to n.

4	2	6	1
8	7	5	
3			

\rightarrow The Specht polynomial sp_{T} associated with T is the product of the column Vandermonde determinants

$$
\mathrm{sp}_{T}=\left(X_{4}-X_{8}\right)\left(X_{4}-X_{3}\right)\left(X_{8}-X_{3}\right)\left(X_{2}-X_{7}\right)\left(X_{6}-X_{5}\right)
$$

\rightarrow The μ-Specht ideal: $I_{\mu}^{\mathrm{sp}}:=\left\langle\operatorname{sp}_{T}, T\right.$ of shape $\left.\mu\right\rangle \subset \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$.

Specht Odyssey

\rightarrow A Young tableau of shape $\mu \vdash n$ is a tableau T of shape μ filled-in with numbers from 1 to n.

4	2	6	1
8	7	5	
3			
$y y n n n$			

\rightarrow The Specht polynomial sp_{T} associated with T is the product of the column Vandermonde determinants

$$
\mathrm{sp}_{T}=\left(X_{4}-X_{8}\right)\left(X_{4}-X_{3}\right)\left(X_{8}-X_{3}\right)\left(X_{2}-X_{7}\right)\left(X_{6}-X_{5}\right)
$$

\rightarrow The μ-Specht ideal: $I_{\mu}^{\mathrm{sp}}:=\left\langle\operatorname{sp}_{T}, T\right.$ of shape $\left.\mu\right\rangle \subset \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$.
\rightarrow The μ-Specht variety: $V_{\mu}=V\left(I_{\mu}^{\text {sp }}\right)$.

Specht Odyssey

\rightarrow A Young tableau of shape $\mu \vdash n$ is a tableau T of shape μ filled-in with numbers from 1 to n.

4	2	6	1
8	7	5	
3			

\rightarrow The Specht polynomial sp_{T} associated with T is the product of the column Vandermonde determinants

$$
\mathrm{sp}_{T}=\left(X_{4}-X_{8}\right)\left(X_{4}-X_{3}\right)\left(X_{8}-X_{3}\right)\left(X_{2}-X_{7}\right)\left(X_{6}-X_{5}\right)
$$

\rightarrow The μ-Specht ideal: $I_{\mu}^{\mathrm{sp}}:=\left\langle\operatorname{sp}_{T}, T\right.$ of shape $\left.\mu\right\rangle \subset \mathbb{K}\left[X_{1}, \ldots, X_{n}\right]$.
\rightarrow The μ-Specht variety: $V_{\mu}=V\left(I_{\mu}^{\text {sp }}\right)$.
\rightarrow Note: For $x \in \mathbb{K}^{n}, x \notin V_{\Lambda(x)}: \begin{aligned} & x_{1}\left|x_{1}\right| x_{1} \mid x_{1} \\ & \frac{x_{2}}{2}\left|x_{2}\right| x_{2} \\ & x_{3}\end{aligned}$

Comparison of Specht ideals

Comparison of Specht ideals

Theorem [M., Riener, Verdure]

For λ, μ partitions of n,

$$
I_{\lambda}^{\mathrm{sP}} \subset I_{\mu}^{\mathrm{sp}} \Leftrightarrow V_{\mu} \subset V_{\lambda} \Leftrightarrow \lambda \unlhd \mu .
$$

Comparison of Specht ideals

Theorem [M., Riener, Verdure]

For λ, μ partitions of n,

$$
I_{\lambda}^{\text {sp }} \subset I_{\mu}^{\text {sp }} \Leftrightarrow V_{\mu} \subset V_{\lambda} \Leftrightarrow \lambda \unlhd \mu .
$$

\rightarrow Corollary: Characterization with orbit types:

$$
V_{\mu}=\left(\bigcup_{\lambda \unlhd \mu} H_{\lambda}\right)^{c}=\bigcup_{\nu \nexists \mu} H_{\nu}
$$

Comparison of Specht ideals

Theorem [M., Riener, Verdure]

For λ, μ partitions of n,

$$
I_{\lambda}^{\text {sp }} \subset I_{\mu}^{\text {sp }} \Leftrightarrow V_{\mu} \subset V_{\lambda} \Leftrightarrow \lambda \unlhd \mu .
$$

\rightarrow Corollary: Characterization with orbit types:

$$
V_{\mu}=\left(\bigcup_{\lambda \unlhd \mu} H_{\lambda}\right)^{c}=\bigcup_{\nu \nexists \mu} H_{\nu}
$$

\rightarrow Consequence: If I is a symmetric ideal and $I_{\mu}^{\text {sp }} \subset I$, then

$$
V(I) \subset V_{\mu}=\bigcup_{\nu \nsubseteq \mu} H_{\nu}
$$

Comparison of Specht ideals

Theorem [M., Riener, Verdure]

For λ, μ partitions of n,

$$
I_{\lambda}^{\mathrm{sp}} \subset I_{\mu}^{\mathrm{sp}} \Leftrightarrow V_{\mu} \subset V_{\lambda} \Leftrightarrow \lambda \unlhd \mu
$$

\rightarrow Corollary: Characterization with orbit types:

$$
V_{\mu}=\left(\bigcup_{\lambda \unlhd \mu} H_{\lambda}\right)^{c}=\bigcup_{\nu \nexists \mu} H_{\nu}
$$

\rightarrow Consequence: If I is a symmetric ideal and $I_{\mu}^{\text {sp }} \subset I$, then

$$
V(I) \subset V_{\mu}=\bigcup_{\nu \nexists \mu} H_{\nu}
$$

\rightarrow Only look at points x with $\Lambda(x) \nexists \mu!$

Specht polynomials in symmetric ideals

Specht polynomials in symmetric ideals

\rightarrow Given a symmetric ideal I, what are the Specht ideals contained in I ?

Specht polynomials in symmetric ideals

\rightarrow Given a symmetric ideal I, what are the Specht ideals contained in I ?
\rightarrow Let $P \in I$, of degree d. Let P_{d} be the component of P of degree d.

Specht polynomials in symmetric ideals

\rightarrow Given a symmetric ideal I, what are the Specht ideals contained in I ?
\rightarrow Let $P \in I$, of degree d. Let P_{d} be the component of P of degree d.
\rightarrow The weight $w t\left(P_{d}\right)$ of P_{d} : the number of variables appearing in P_{d}.

Specht polynomials in symmetric ideals

\rightarrow Given a symmetric ideal I, what are the Specht ideals contained in I ?
\rightarrow Let $P \in I$, of degree d. Let P_{d} be the component of P of degree d.
\rightarrow The weight wt $\left(P_{d}\right)$ of P_{d} : the number of variables appearing in P_{d}.
\rightarrow Assume $w t\left(P_{d}\right)=\ell$ with $\ell+d \leq n$. To a monomial $m=X_{1}^{\lambda_{1}} X_{2}^{\lambda_{2}} \cdot X_{\ell}^{\lambda_{\ell}}$
of P_{d}, where $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\ell}$ we associate the partition

$$
\mu(m)=(\lambda_{1}+1, \lambda_{2}+1, \ldots, \lambda_{\ell}+1, \underbrace{1, \ldots, 1}_{n-d-\ell}) .
$$

Specht polynomials in symmetric ideals

\rightarrow Given a symmetric ideal I, what are the Specht ideals contained in I ?
\rightarrow Let $P \in I$, of degree d. Let P_{d} be the component of P of degree d.
\rightarrow The weight wt $\left(P_{d}\right)$ of P_{d} : the number of variables appearing in P_{d}.
\rightarrow Assume $w t\left(P_{d}\right)=\ell$ with $\ell+d \leq n$. To a monomial $m=X_{1}^{\lambda_{1}} X_{2}^{\lambda_{2}} \cdot X_{\ell}^{\lambda_{\ell}}$
of P_{d}, where $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{\ell}$ we associate the partition

$$
\mu(m)=(\lambda_{1}+1, \lambda_{2}+1, \ldots, \lambda_{\ell}+1, \underbrace{1, \ldots, 1}_{n-d-\ell}) .
$$

Theorem [M., Riener, Verdure]

$$
I_{\mu(m)^{\perp}}^{\mathrm{sp}} \subset I
$$

Consequences

Consequences

\rightarrow Geometrically, this gives:

$$
V(I) \cap H_{\lambda}=\emptyset \text { for all } \lambda \unlhd \mu(m)^{\perp}
$$

Consequences

\rightarrow Geometrically, this gives:

$$
V(I) \cap H_{\lambda}=\emptyset \text { for all } \lambda \unlhd \mu(m)^{\perp}
$$

\rightarrow If len $(\lambda)>d$, then $\lambda \unlhd \mu(m)^{\perp}$.

Consequences

\rightarrow Geometrically, this gives:

$$
V(I) \cap H_{\lambda}=\emptyset \text { for all } \lambda \unlhd \mu(m)^{\perp}
$$

\rightarrow If len $(\lambda)>d$, then $\lambda \unlhd \mu(m)^{\perp}$.
\rightarrow So any point in $V(I)$ has at most d distinct coordinates...

Consequences

\rightarrow Geometrically, this gives:

$$
V(I) \cap H_{\lambda}=\emptyset \text { for all } \lambda \unlhd \mu(m)^{\perp}
$$

\rightarrow If len $(\lambda)>d$, then $\lambda \unlhd \mu(m)^{\perp}$.
\rightarrow So any point in $V(I)$ has at most d distinct coordinates...
\rightarrow We recover (at least) the degree principle! And even more:

Consequences

\rightarrow Geometrically, this gives:

$$
V(I) \cap H_{\lambda}=\emptyset \text { for all } \lambda \unlhd \mu(m)^{\perp}
$$

\rightarrow If len $(\lambda)>d$, then $\lambda \unlhd \mu(m)^{\perp}$.
\rightarrow So any point in $V(I)$ has at most d distinct coordinates...
\rightarrow We recover (at least) the degree principle! And even more:
$\rightarrow V(I)$ contains no point in with more than d distinct coordinates.

Consequences

\rightarrow Geometrically, this gives:

$$
V(I) \cap H_{\lambda}=\emptyset \text { for all } \lambda \unlhd \mu(m)^{\perp}
$$

\rightarrow If len $(\lambda)>d$, then $\lambda \unlhd \mu(m)^{\perp}$.
\rightarrow So any point in $V(I)$ has at most d distinct coordinates...
\rightarrow We recover (at least) the degree principle! And even more:
$\rightarrow V(I)$ contains no point in with more than d distinct coordinates.
\rightarrow The dimension of the variety is at most d.

Non-negative certificates: Here cones the sun

Non-negative certificates: Here cones the sun

\rightarrow Recall: to get a lower bound on the minimum of P, find λ such that

$$
P-\lambda \geq 0 .
$$

Non-negative certificates: Here cones the sun

\rightarrow Recall: to get a lower bound on the minimum of P, find λ such that

$$
P-\lambda \geq 0 .
$$

\rightarrow However, it is hard to decide if a polynomial belongs to the cone of non-negative polynomials.

Non-negative certificates: Here cones the sun

\rightarrow Recall: to get a lower bound on the minimum of P, find λ such that

$$
P-\lambda \geq 0 .
$$

\rightarrow However, it is hard to decide if a polynomial belongs to the cone of non-negative polynomials.
\rightarrow Idea: Use subcones that are easier to characterize algorithmically.

Non-negative certificates: Here cones the sun

\rightarrow Recall: to get a lower bound on the minimum of P, find λ such that

$$
P-\lambda \geq 0 .
$$

\rightarrow However, it is hard to decide if a polynomial belongs to the cone of non-negative polynomials.
\rightarrow Idea: Use subcones that are easier to characterize algorithmically.
\rightarrow The most famous of them is the cone of Sums Of Squares.

Non-negative certificates: Here cones the sun

\rightarrow Recall: to get a lower bound on the minimum of P, find λ such that

$$
P-\lambda \geq 0
$$

\rightarrow However, it is hard to decide if a polynomial belongs to the cone of non-negative polynomials.
\rightarrow Idea: Use subcones that are easier to characterize algorithmically.
\rightarrow The most famous of them is the cone of Sums Of Squares.
\rightarrow There exist non-negative polynomials that are not sums of squares.

Non-negative certificates: Here cones the sun

\rightarrow Recall: to get a lower bound on the minimum of P, find λ such that

$$
P-\lambda \geq 0 .
$$

\rightarrow However, it is hard to decide if a polynomial belongs to the cone of non-negative polynomials.
\rightarrow Idea: Use subcones that are easier to characterize algorithmically.
\rightarrow The most famous of them is the cone of Sums Of Squares.
\rightarrow There exist non-negative polynomials that are not sums of squares.
\rightarrow Example: the Motzkin polynomial,

$$
1+x^{2} y^{4}+x^{4} y^{2}-3 x^{2} y^{2}
$$

Non-negative certificates: Here cones the sun

\rightarrow Recall: to get a lower bound on the minimum of P, find λ such that

$$
P-\lambda \geq 0
$$

\rightarrow However, it is hard to decide if a polynomial belongs to the cone of non-negative polynomials.
\rightarrow Idea: Use subcones that are easier to characterize algorithmically.
\rightarrow The most famous of them is the cone of Sums Of Squares.
\rightarrow There exist non-negative polynomials that are not sums of squares.
\rightarrow Example: the Motzkin polynomial,

$$
1+x^{2} y^{4}+x^{4} y^{2}-3 x^{2} y^{2}
$$

\rightarrow What about other certificates?

SAGE against the Motzkin

SAGE against the Motzkin

\rightarrow Remember the arithmetic-geometric inequality

$$
\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n} \leq \frac{1}{n}\left(x_{1}+x_{2}+\ldots+x_{n}\right) .
$$

SAGE against the Motzkin

\rightarrow Remember the arithmetic-geometric inequality

$$
\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n} \leq \frac{1}{n}\left(x_{1}+x_{2}+\ldots+x_{n}\right) .
$$

SAGE against the Motzkin

\rightarrow Remember the arithmetic-geometric inequality

$$
\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n} \leq \frac{1}{n}\left(x_{1}+x_{2}+\ldots+x_{n}\right) .
$$

\rightarrow Here, $(2,2)=\frac{1}{3}((0,0)+(4,2)+(2,4))$.

SAGE against the Motzkin

\rightarrow Remember the arithmetic-geometric inequality

$$
\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n} \leq \frac{1}{n}\left(x_{1}+x_{2}+\ldots+x_{n}\right) .
$$

\rightarrow Here, $(2,2)=\frac{1}{3}((0,0)+(4,2)+(2,4))$.
\rightarrow Hence $x^{2} y^{2} \leq \frac{1}{3}\left(1+x^{4} y^{2}+x^{2} y^{4}\right)$

SAGE against the Motzkin

\rightarrow Remember the arithmetic-geometric inequality

$$
\left(x_{1} x_{2} \cdots x_{n}\right)^{1 / n} \leq \frac{1}{n}\left(x_{1}+x_{2}+\ldots+x_{n}\right) .
$$

\rightarrow Here, $(2,2)=\frac{1}{3}((0,0)+(4,2)+(2,4))$.
\rightarrow Hence $x^{2} y^{2} \leq \frac{1}{3}\left(1+x^{4} y^{2}+x^{2} y^{4}\right)$
$\rightarrow 1+x^{2} y^{4}+x^{4} y^{2}-3 x^{2} y^{2} \geq 0$

AGE functions

AGE functions

\rightarrow We have

$$
1+x^{2} y^{4}+x^{4} y^{2}-3 x^{2} y^{2} \geq 0 \Leftrightarrow 1+e^{2 x+4 y}+e^{4 x+2 y}-3 e^{2 x+2 y} \geq 0 .
$$

AGE functions

\rightarrow We have

$$
1+x^{2} y^{4}+x^{4} y^{2}-3 x^{2} y^{2} \geq 0 \Leftrightarrow 1+e^{2 x+4 y}+e^{4 x+2 y}-3 e^{2 x+2 y} \geq 0
$$

\rightarrow The more general framework of signomials.

AGE functions

\rightarrow We have

$$
1+x^{2} y^{4}+x^{4} y^{2}-3 x^{2} y^{2} \geq 0 \Leftrightarrow 1+e^{2 x+4 y}+e^{4 x+2 y}-3 e^{2 x+2 y} \geq 0
$$

\rightarrow The more general framework of signomials.
\rightarrow An AGE signomial is a sum of exponentials of the form

$$
f(x)=\sum_{\alpha \in \mathcal{A}} c_{\alpha} e^{\langle\alpha, x\rangle}+c_{\beta} e^{\langle\beta, x\rangle}
$$

such that $\mathcal{A} \cup\{\beta\} \subset \mathbb{R}^{n}, c_{\alpha} \geq 0, c_{\beta} \in \mathbb{R}$, and $f(x) \geq 0$ on \mathbb{R}^{n}.

Non-negativity criterion

\rightarrow The arithmetic-geometric inequality implies the following criterion:

Non-negativity criterion

\rightarrow The arithmetic-geometric inequality implies the following criterion:
\rightarrow Let $\mathcal{A} \cup\{\beta\} \subset \mathbb{R}^{n}$, and

$$
f(x)=\sum_{\alpha \in \mathcal{A}} c_{\alpha} e^{\langle\alpha, x\rangle}+c_{\beta} e^{\langle\beta, x\rangle}
$$

with $c=\left(c_{\alpha}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $c_{\beta} \in \mathbb{R}$.

Non-negativity criterion

\rightarrow The arithmetic-geometric inequality implies the following criterion:
\rightarrow Let $\mathcal{A} \cup\{\beta\} \subset \mathbb{R}^{n}$, and

$$
f(x)=\sum_{\alpha \in \mathcal{A}} c_{\alpha} e^{\langle\alpha, x\rangle}+c_{\beta} e^{\langle\beta, x\rangle}
$$

with $c=\left(c_{\alpha}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $c_{\beta} \in \mathbb{R}$.
\rightarrow Then f is an AGE if and only if there is $\nu=\left(\nu_{\alpha}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ such that

Non-negativity criterion

\rightarrow The arithmetic-geometric inequality implies the following criterion:
\rightarrow Let $\mathcal{A} \cup\{\beta\} \subset \mathbb{R}^{n}$, and

$$
f(x)=\sum_{\alpha \in \mathcal{A}} c_{\alpha} e^{\langle\alpha, x\rangle}+c_{\beta} e^{\langle\beta, x\rangle}
$$

with $c=\left(c_{\alpha}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $c_{\beta} \in \mathbb{R}$.
\rightarrow Then f is an AGE if and only if there is $\nu=\left(\nu_{\alpha}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ such that

- $\sum_{\alpha \in \mathcal{A}} \nu_{\alpha} \alpha=\left(\sum_{\alpha \in \mathcal{A}} \nu_{\alpha}\right) \beta$

Non-negativity criterion

\rightarrow The arithmetic-geometric inequality implies the following criterion:
\rightarrow Let $\mathcal{A} \cup\{\beta\} \subset \mathbb{R}^{n}$, and

$$
f(x)=\sum_{\alpha \in \mathcal{A}} c_{\alpha} e^{\langle\alpha, x\rangle}+c_{\beta} e^{\langle\beta, x\rangle}
$$

with $c=\left(c_{\alpha}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $c_{\beta} \in \mathbb{R}$.
\rightarrow Then f is an AGE if and only if there is $\nu=\left(\nu_{\alpha}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ such that

- $\sum_{\alpha \in \mathcal{A}} \nu_{\alpha} \alpha=\left(\sum_{\alpha \in \mathcal{A}} \nu_{\alpha}\right) \beta$

- $D(\nu, e \cdot c) \leqslant c_{\beta}$,
where $D(\nu, e \cdot c)=\sum_{\alpha \in \mathcal{A}} \nu_{\alpha} \ln \left(\frac{\nu_{\alpha}}{e \cdot c_{\alpha}}\right)$ is the relative entropy function.

SAGE functions

SAGE functions

\rightarrow A SAGE signomial is a sum of AGE signomials.

SAGE functions

\rightarrow A SAGE signomial is a sum of AGE signomials.
\rightarrow [Murray, Chandrasekaran, Wierman, 2020] Let $\mathcal{A} \cup \mathcal{B} \subset \mathbb{R}^{n}$, and

$$
f(x)=\sum_{\alpha \in \mathcal{A}} c_{\alpha} e^{\langle\alpha, x\rangle}+\sum_{\beta \in \mathcal{B}} c_{\beta} e^{\langle\beta, x\rangle}
$$

with $c=\left(c_{\alpha}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $c_{\beta} \in \mathbb{R}$ for every $\beta \in \mathcal{B}$.

SAGE functions

\rightarrow A SAGE signomial is a sum of AGE signomials.
\rightarrow [Murray, Chandrasekaran, Wierman, 2020] Let $\mathcal{A} \cup \mathcal{B} \subset \mathbb{R}^{n}$, and

$$
f(x)=\sum_{\alpha \in \mathcal{A}} c_{\alpha} e^{\langle\alpha, x\rangle}+\sum_{\beta \in \mathcal{B}} c_{\beta} e^{\langle\beta, x\rangle}
$$

with $c=\left(c_{\alpha}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $c_{\beta} \in \mathbb{R}$ for every $\beta \in \mathcal{B}$.
\rightarrow Then f is a SAGE if and only if, for every $\beta \in \mathcal{B}$, there is
$c^{(\beta)}=\left(c_{\alpha}^{(\beta)}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $\nu^{(\beta)}=\left(\nu_{\alpha}^{(\beta)}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ such that

SAGE functions

\rightarrow A SAGE signomial is a sum of AGE signomials.
\rightarrow [Murray, Chandrasekaran, Wierman, 2020] Let $\mathcal{A} \cup \mathcal{B} \subset \mathbb{R}^{n}$, and

$$
f(x)=\sum_{\alpha \in \mathcal{A}} c_{\alpha} e^{\langle\alpha, x\rangle}+\sum_{\beta \in \mathcal{B}} c_{\beta} e^{\langle\beta, x\rangle}
$$

with $c=\left(c_{\alpha}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $c_{\beta} \in \mathbb{R}$ for every $\beta \in \mathcal{B}$.
\rightarrow Then f is a SAGE if and only if, for every $\beta \in \mathcal{B}$, there is
$c^{(\beta)}=\left(c_{\alpha}^{(\beta)}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $\nu^{(\beta)}=\left(\nu_{\alpha}^{(\beta)}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ such that
(i) $\sum_{\alpha \in \mathcal{A}} \nu_{\alpha}^{(\beta)} \alpha=\left(\sum_{\alpha \in \mathcal{A}} \nu_{\alpha}^{(\beta)}\right) \beta \quad$ for $\beta \in \mathcal{B}$,

SAGE functions

\rightarrow A SAGE signomial is a sum of AGE signomials.
\rightarrow [Murray, Chandrasekaran, Wierman, 2020] Let $\mathcal{A} \cup \mathcal{B} \subset \mathbb{R}^{n}$, and

$$
f(x)=\sum_{\alpha \in \mathcal{A}} c_{\alpha} e^{\langle\alpha, x\rangle}+\sum_{\beta \in \mathcal{B}} c_{\beta} e^{\langle\beta, x\rangle}
$$

with $c=\left(c_{\alpha}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $c_{\beta} \in \mathbb{R}$ for every $\beta \in \mathcal{B}$.
\rightarrow Then f is a SAGE if and only if, for every $\beta \in \mathcal{B}$, there is
$c^{(\beta)}=\left(c_{\alpha}^{(\beta)}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $\nu^{(\beta)}=\left(\nu_{\alpha}^{(\beta)}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ such that
(i) $\sum_{\alpha \in \mathcal{A}} \nu_{\alpha}^{(\beta)} \alpha=\left(\sum_{\alpha \in \mathcal{A}} \nu_{\alpha}^{(\beta)}\right) \beta \quad$ for $\beta \in \mathcal{B}$,
(ii) $D\left(\nu^{(\beta)}, e \cdot c^{(\beta)}\right) \leqslant c_{\beta} \quad$ for $\beta \in \mathcal{B}$,

SAGE functions

\rightarrow A SAGE signomial is a sum of AGE signomials.
\rightarrow [Murray, Chandrasekaran, Wierman, 2020] Let $\mathcal{A} \cup \mathcal{B} \subset \mathbb{R}^{n}$, and

$$
f(x)=\sum_{\alpha \in \mathcal{A}} c_{\alpha} e^{\langle\alpha, x\rangle}+\sum_{\beta \in \mathcal{B}} c_{\beta} e^{\langle\beta, x\rangle}
$$

with $c=\left(c_{\alpha}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $c_{\beta} \in \mathbb{R}$ for every $\beta \in \mathcal{B}$.
\rightarrow Then f is a SAGE if and only if, for every $\beta \in \mathcal{B}$, there is
$c^{(\beta)}=\left(c_{\alpha}^{(\beta)}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $\nu^{(\beta)}=\left(\nu_{\alpha}^{(\beta)}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ such that
(i) $\sum_{\alpha \in \mathcal{A}} \nu_{\alpha}^{(\beta)} \alpha=\left(\sum_{\alpha \in \mathcal{A}} \nu_{\alpha}^{(\beta)}\right) \beta \quad$ for $\beta \in \mathcal{B}$,
(ii) $D\left(\nu^{(\beta)}, e \cdot c^{(\beta)}\right) \leqslant c_{\beta} \quad$ for $\beta \in \mathcal{B}$,
(iii) $\sum_{\beta \in \mathcal{B}} c_{\alpha}^{(\beta)} \leqslant c_{\alpha} \quad$ for $\alpha \in \mathcal{A}$.

SAGE functions

\rightarrow A SAGE signomial is a sum of AGE signomials.
\rightarrow [Murray, Chandrasekaran, Wierman, 2020] Let $\mathcal{A} \cup \mathcal{B} \subset \mathbb{R}^{n}$, and

$$
f(x)=\sum_{\alpha \in \mathcal{A}} c_{\alpha} e^{\langle\alpha, x\rangle}+\sum_{\beta \in \mathcal{B}} c_{\beta} e^{\langle\beta, x\rangle}
$$

with $c=\left(c_{\alpha}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $c_{\beta} \in \mathbb{R}$ for every $\beta \in \mathcal{B}$.
\rightarrow Then f is a SAGE if and only if, for every $\beta \in \mathcal{B}$, there is
$c^{(\beta)}=\left(c_{\alpha}^{(\beta)}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ and $\nu^{(\beta)}=\left(\nu_{\alpha}^{(\beta)}\right) \in \mathbb{R}_{+}^{\mathcal{A}}$ such that
(i) $\sum_{\alpha \in \mathcal{A}} \nu_{\alpha}^{(\beta)} \alpha=\left(\sum_{\alpha \in \mathcal{A}} \nu_{\alpha}^{(\beta)}\right) \beta \quad$ for $\beta \in \mathcal{B}$,
(ii) $D\left(\nu^{(\beta)}, e \cdot c^{(\beta)}\right) \leqslant c_{\beta} \quad$ for $\beta \in \mathcal{B}$,
(iii) $\sum_{\beta \in \mathcal{B}} c_{\alpha}^{(\beta)} \leqslant c_{\alpha} \quad$ for $\alpha \in \mathcal{A}$.
\rightarrow Can be solved with relative entropy programming.

Size of the problem

Size of the problem

$$
\sum_{\alpha \in \mathcal{A}} c_{\alpha} e^{\langle\alpha, x\rangle}+\sum_{\beta \in \mathcal{B}} c_{\beta} e^{\langle\beta, x\rangle}
$$

$\sum_{\alpha} c_{\alpha}^{\left(\beta_{1}\right)} e^{\langle\alpha, x\rangle}+c_{\beta_{1}} e^{\left\langle\beta_{1}, x\right\rangle} \quad \sum_{\alpha} c_{\alpha}^{\left(\beta_{2}\right)} e^{\langle\alpha, x\rangle}+c_{\beta_{2}} e^{\left\langle\beta_{2}, x\right\rangle} \quad \sum_{\alpha} c_{\alpha}^{\left(\beta_{3}\right)} e^{\langle\alpha, x\rangle}+c_{\beta_{3}} e^{\left\langle\beta_{3}, x\right\rangle}$
$\rightarrow 2|\mathcal{B}||\mathcal{A}|$ variables.

Size of the problem

$$
\sum_{\alpha \in \mathcal{A}} c_{\alpha} e^{\langle\alpha, x\rangle}+\sum_{\beta \in \mathcal{B}} c_{\beta} e^{\langle\beta, x\rangle}
$$

$\sum_{\alpha} c_{\alpha}^{\left(\beta_{1}\right)} e^{\langle\alpha, x\rangle}+c_{\beta_{1}} e^{\left\langle\beta_{1}, x\right\rangle}$
$\sum_{\alpha} c_{\alpha}^{\left(\beta_{2}\right)} e^{\langle\alpha, x\rangle}+c_{\beta_{2}} e^{\left\langle\beta_{2}, x\right\rangle}$
$\sum_{\alpha} c_{\alpha}^{\left(\beta_{3}\right)} e^{\langle\alpha, x\rangle}+c_{\beta_{3}} e^{\left\langle\beta_{3}, x\right\rangle}$
$\rightarrow 2|\mathcal{B} \| \mathcal{A}|$ variables.
$\rightarrow n|\mathcal{B}|+|\mathcal{B}|+|\mathcal{A}|$ constraints.

What about symmetries?

What about symmetries?

$\rightarrow[$ M., Naumann, Riener, Theobald, Verdure, 2021+]

What about symmetries?

$\rightarrow\left[\right.$ M., Naumann, Riener, Theobald, Verdure, 2021 ${ }^{+}$]
\rightarrow Assume f is G-invariant.

What about symmetries?

\rightarrow [M., Naumann, Riener, Theobald, Verdure, 2021 ${ }^{+}$]
\rightarrow Assume f is G-invariant.
\rightarrow Let $\hat{\mathcal{A}}, \hat{\mathcal{B}}$ be sets of G-representatives.

What about symmetries?

\rightarrow [M., Naumann, Riener, Theobald, Verdure, 2021 ${ }^{+}$]
\rightarrow Assume f is G-invariant.
\rightarrow Let $\hat{\mathcal{A}}, \hat{\mathcal{B}}$ be sets of G-representatives.

\rightarrow Does f have a symmetric decomposition?

What about symmetries?

$\rightarrow\left[\right.$ M., Naumann, Riener, Theobald, Verdure, $\left.2021^{+}\right]$
\rightarrow Assume f is G-invariant.
\rightarrow Let $\hat{\mathcal{A}}, \hat{\mathcal{B}}$ be sets of G-representatives.

\rightarrow Does f have a symmetric decomposition?
\rightarrow Can we reduce the size of the relative entropy program?

Orbit decomposition

Orbit decomposition

Theorem [M., Naumann, Riener, Theobald, Verdure]

The signomial f is a SAGE if and only if for every $\hat{\beta} \in \hat{\mathcal{B}}$, there exists an AGE signomial $h_{\hat{\beta}}$ such that

$$
f=\sum_{\hat{\beta} \in \hat{\mathcal{B}}} \sum_{\rho \in G / \operatorname{Stab}(\hat{\beta})} \rho h_{\hat{\beta}} .
$$

The functions $h_{\hat{\beta}}$ can be chosen invariant under the action of $\operatorname{Stab}(\hat{\beta})$.

Orbit decomposition

Theorem [M., Naumann, Riener, Theobald, Verdure]

The signomial f is a SAGE if and only if for every $\hat{\beta} \in \hat{\mathcal{B}}$, there exists an AGE signomial $h_{\hat{\beta}}$ such that

$$
f=\sum_{\hat{\beta} \in \hat{\mathcal{B}}} \sum_{\rho \in G / \operatorname{Stab}(\hat{\beta})} \rho h_{\hat{\beta}} .
$$

The functions $h_{\hat{\beta}}$ can be chosen invariant under the action of $\operatorname{Stab}(\hat{\beta})$.
\rightarrow This already reduces the number of AGE signomials in the decomposition.

Orbit decomposition

Theorem [M., Naumann, Riener, Theobald, Verdure]

The signomial f is a SAGE if and only if for every $\hat{\beta} \in \hat{\mathcal{B}}$, there exists an AGE signomial $h_{\hat{\beta}}$ such that

$$
f=\sum_{\hat{\beta} \in \hat{\mathcal{B}}} \sum_{\rho \in G / \operatorname{Stab}(\hat{\beta})} \rho h_{\hat{\beta}} .
$$

The functions $h_{\hat{\beta}}$ can be chosen invariant under the action of $\operatorname{Stab}(\hat{\beta})$.
\rightarrow This already reduces the number of AGE signomials in the decomposition.
\rightarrow Moreover, the invariance under $\operatorname{Stab}(\hat{\beta})$ allows to further reduce the number of variables and constraints.

Symmetry reduction

Symmetry reduction

Theorem [M., Naumann, Riener, Theobald, Verdure]

The signomial f is a SAGE if and only if for every $\hat{\beta} \in \hat{\mathcal{B}}$, there exist $c^{(\hat{\beta})} \in \mathbb{R}_{+}^{\mathcal{A} / \operatorname{Stab}(\hat{\beta})}$ and $\nu^{(\hat{\beta})} \in \mathbb{R}_{+}^{\mathcal{A} / \operatorname{Stab}(\hat{\beta})}$ such that
(i) $\sum_{\alpha \in \mathcal{A} / \operatorname{Stab}(\hat{\beta})} \nu_{\alpha}^{(\hat{\beta})} \sum_{\alpha^{\prime} \in \operatorname{Stab}(\hat{\beta}) \cdot \alpha}\left(\alpha^{\prime}-\hat{\beta}\right)=0 \quad \forall \hat{\beta} \in \hat{\mathcal{B}}$,
(ii) $\sum_{\alpha \in \mathcal{A} / \operatorname{Stab}(\hat{\beta})}|\operatorname{Stab}(\hat{\beta}) \cdot \alpha| \nu_{\alpha}^{(\hat{\beta})} \ln \frac{\nu_{\alpha}^{(\hat{\beta})}}{\operatorname{ec}_{\alpha}^{(\hat{\beta})}} \leqslant c_{\hat{\beta}} \quad \forall \hat{\beta} \in \hat{\mathcal{B}}$,
(iii) $\sum_{\hat{\beta} \in \hat{\mathcal{B}}} \frac{|\operatorname{Stab}(\alpha)|}{|\operatorname{Stab}(\hat{\beta})|} \sum_{\gamma \in(G \cdot \alpha) / \operatorname{Stab}(\hat{\beta})}|\operatorname{Stab}(\hat{\beta}) \cdot \gamma| c_{\gamma}^{(\hat{\beta})} \leqslant c_{\alpha} \quad \forall \alpha \in \hat{\mathcal{A}}$.

Size estimate

Size estimate

\rightarrow Without reduction: $2|\mathcal{B}||\mathcal{A}|$ variables, $n|\mathcal{B}|+|\mathcal{B}|+|\mathcal{A}|$ constraints.

Size estimate

\rightarrow Without reduction: $2|\mathcal{B}||\mathcal{A}|$ variables, $n|\mathcal{B}|+|\mathcal{B}|+|\mathcal{A}|$ constraints.

\rightarrow With reduction:

Size estimate

\rightarrow Without reduction: $2|\mathcal{B}||\mathcal{A}|$ variables, $n|\mathcal{B}|+|\mathcal{B}|+|\mathcal{A}|$ constraints.

\rightarrow With reduction:

$\rightarrow 2 \sum_{\hat{\beta} \in \hat{\mathcal{B}}}|\mathcal{A} / \operatorname{Stab}(\hat{\beta})|$ variables.

Size estimate

\rightarrow Without reduction: $2|\mathcal{B}||\mathcal{A}|$ variables, $n|\mathcal{B}|+|\mathcal{B}|+|\mathcal{A}|$ constraints.

\rightarrow With reduction:

$\rightarrow 2 \sum_{\hat{\beta} \in \hat{\mathcal{B}}}|\mathcal{A} / \operatorname{Stab}(\hat{\beta})|$ variables.
\rightarrow At most $n|\hat{\mathcal{B}}|+|\hat{\mathcal{B}}|+|\hat{\mathcal{A}}|$ constraints.

A stability result

A stability result

\rightarrow For $\alpha \in \mathbb{R}^{n}$, denote by $w t(\alpha)$ its number of non-zero coordinates.

A stability result

\rightarrow For $\alpha \in \mathbb{R}^{n}$, denote by $w t(\alpha)$ its number of non-zero coordinates.

Theorem [M., Naumann, Riener, Theobald, Verdure]

Let $k, \ell, w \in \mathbb{N}$ be fixed. Then for every integer $n \geqslant 2 w$ and every \mathcal{S}_{n}-invariant signomial such that $|\hat{\mathcal{A}}| \leqslant k,|\hat{\mathcal{B}}| \leqslant \ell$, and

$$
\max _{\hat{\gamma} \in \hat{A} \cup \hat{B}} w t(\hat{\gamma}) \leqslant w,
$$

the number of constraints and the number of variables of the symmetry adapted program are bounded by constants only depending of k, ℓ and w :

$$
C_{n} \leqslant k+\ell+\ell(w+1) \text { and } V_{n} \leqslant 2 \ell k u(w)
$$

where $u(w)=\sum_{i=0}^{w}\binom{w}{i}^{2} i!$.

Concrete size comparisons

Concrete size comparisons

\rightarrow Look at some cases with $\hat{\mathcal{A}}=\{0, \hat{\alpha}\}$ and $\hat{\mathcal{B}}=\{\hat{\beta}\}$

Concrete size comparisons

\rightarrow Look at some cases with $\hat{\mathcal{A}}=\{0, \hat{\alpha}\}$ and $\hat{\mathcal{B}}=\{\hat{\beta}\}$

		Standard		Symmetric	
$\left\|\mathcal{S}_{n} \cdot \hat{\beta}\right\|$	$\left\|\mathcal{S}_{n} \cdot \hat{\alpha}\right\|$	V_{n}	C_{n}	V_{n}	C_{n}
1	$n!$	$2 n!+3$	$n!+n+2$	5	4
$n!$	n	$2(n+1) n!+1$	$(n+1)(n!+1)$	$2 n+3$	$n+3$
$n!$	$n!$	$2(n!+1) n!+1$	$n!(n+2)+1$	$2 n!+3$	$n+3$
n	n	$2 n(n+1)+1$	$(n+1)^{2}$	7	5

Numerical results (1/4)

Numerical results (1/4)

$\rightarrow f_{n}^{(1)}=\frac{1}{n!} \sum_{\sigma \in \mathcal{S}_{n}} \sigma \exp (\langle\alpha, x\rangle)-\exp (\langle\beta, x\rangle)$ where $\beta=(1, \ldots, 1)$ and $\alpha=(1,2, \ldots, n)$.

		Standard method					Symmetric method			
dim	bound	V_{n}	C_{n}	t_{s}	t_{r}	V_{n}	C_{n}	t_{s}	t_{r}	
2	-0.1481	7	6	0.0113	0.0121	5	4	0.0147	0.0158	
3	-0.2499	15	11	0.0148	0.0160	5	4	0.0141	0.0149	
4	-0.3257	51	30	0.0304	0.0337	5	4	0.0139	0.0147	
5	-0.3849	243	127	-	-	5	4	0.0140	0.0147	
6	-0.4327	1443	728	-	-	5	4	0.0136	0.0144	
7	-0.4724^{*}	10083	5049	-	-	5	4	0.0211	0.0222	

Numerical results (2/4)

Numerical results (2/4)

$\rightarrow f_{n}^{(2)}=(n-1)!\sum_{i=1}^{n} \exp \left(n^{2} x_{i}\right)-\sum_{\sigma \in \mathcal{S}_{n}} \sigma \exp (\langle\beta, x\rangle)$, where $\beta=(1,2, \ldots, n)$, and $\alpha=\left(n^{2}, 0, \ldots, 0\right)$.

		Standard method					Symmetric method			
dim	bound	V_{n}	C_{n}	t_{s}	t_{r}	V_{n}	C_{n}	t_{s}	t_{r}	
2	-0.2109	13	9	0.0173	0.0185	7	5	0.0297	0.0311	
3	-0.8888	49	28	0.0427	0.0454	9	6	0.0248	0.0264	
4	-4.111	241	125	0.152	0.1701	11	7	0.0296	0.0318	
5	-22.30	1441	726	0.7888	0.8433	13	8	0.0356	0.0384	
6	-141.0	10081	5047	5.422	5.843	15	9	0.0423	0.0458	
7	-1024	80641	40328	57.26	66.67	17	10	0.0491	0.0538	
8	-8418	725761	362889	1514	2211	19	11	0.0568	0.0626	
9	-77355	7257601	3628810	-	-	21	12	0.0661	0.0835	
10		79833601	39916811	-	-	23	13	-	-	

Numerical results (3/4)

Numerical results (3/4)

$$
\begin{aligned}
& \rightarrow f_{n}^{(3)}=\frac{1}{n} \sum_{\sigma \in \mathcal{S}_{n}} \exp (\langle\alpha, x\rangle)-\frac{1}{n} \sum_{\sigma \in \mathcal{S}_{n}} \sigma \exp (\langle\beta, x\rangle) \text {, where } \\
& \beta=(1,2, \ldots, n) \text { and } \alpha=\left(2,8, \ldots, 2 n^{2}\right) .
\end{aligned}
$$

		Standard method					Symmetric method			
dim	bound	V_{n}	C_{n}	t_{s}	t_{r}	V_{n}	C_{n}	t_{s}	t_{r}	
2	-0.4178	13	9	0.0301	0.0323	7	5	0.0431	0.0465	
3	-1.0323	85	31	0.0558	0.0603	15	6	0.0531	0.0569	
4	-3.494	1201	145	-	-	51	7	0.1212	0.1301	
5	-15.13	29041	841	-	-	243	8	0.5750	0.6215	
6		1038241	5761	-	-	1443	9	-	-	

Numerical results (4/4)

Numerical results (4/4)

$\rightarrow f_{n}^{(4)}=\frac{1}{n} \sum_{i=1}^{n} \exp \left(n^{2} x_{i}\right)-\frac{1}{n} \sum_{i=1}^{n} \exp \left((n-1)\left(x_{1}+\cdots+x_{n}\right)+x_{i}\right)$, where $\beta=(n, n-1, n-1, \ldots, n-1)$ and $\alpha=\left(n^{2}, 0, \ldots, 0\right)$.

		Standard method					Symmetric method			
dim	bound	V_{n}	C_{n}	t_{s}	t_{r}	V_{n}	C_{n}	t_{s}	t_{r}	
2	-0.1054	13	9	0.01901	0.0204	7	5	0.0213	0.0229	
3	-0.092	25	16	0.0268	0.0287	7	5	0.0205	0.0218	
4	-0.076	41	25	0.0341	0.0367	7	5	0.0205	0.0218	
68	-0.0053	9385	4761	-	-	7	5	0.0475	0.0519	
95	-0.0038^{*}	18241	9216	-	-	7	5	0.0267	0.0281	

Thank you!

