Linear PDE with Constant Coefficients

Bernd Sturmfels
MPI Leipzig and UC Berkeley

Primary Ideals and their Differential Equations (with Yairon Cid-Ruiz and Roser Homs)

Primary Decomposition with Differential Operators (with Yairon Cid-Ruiz)

Noetherian Operators and Primary Decomposition (by Justin Chen, Marc Härkönen, Robert Krone, Anton Leykin)

History

In his 1938 article on foundations of algebraic geometry, Gröbner introduced differential operators to characterize membership in a polynomial ideal. He derived this for zero-dimensional ideals (Macaulay's inverse systems), and he envisioned it for all ideals. Gröbner wanted algorithmic solutions.

We provide them.

$$
\begin{aligned}
& \text { Wolfgang Gröbner: Über die algebraischen Eigenschaften der Integrale } \\
& \text { von linearen Differentialgleichungen mit konstanten Koeffizienten, } \\
& \text { Monatshefte für Mathematik und Physik (1939) }
\end{aligned}
$$

History

In his 1938 article on foundations of algebraic geometry, Gröbner introduced differential operators to characterize membership in a polynomial ideal. He derived this for zero-dimensional ideals (Macaulay's inverse systems), and he envisioned it for all ideals. Gröbner wanted algorithmic solutions. We provide them.
Wolfgang Gröbner: Über die algebraischen Eigenschaften der Integrale von linearen Differentialgleichungen mit konstanten Koeffizienten, Monatshefte für Mathematik und Physik (1939)

Analysts made substantial contributions to this subject.
In the 1960s, Ehrenpreis and Palamodov studied solutions
to linear partial differential equations (PDE) with constant coefficients. A main step was the characterization of membership in a primary ideal by Noetherian operators.
Their celebrated Fundamental Principle appears in the books
Leon Ehrenpreis: Fourier Analysis in Several Complex Variables, 1970
Victor Palamodov: Linear Differential Operators w Constant Coeffs, 1970

Four Exercises

Question 1: Solve the system of polynomial equations

$$
x^{2}=y^{2}=x z-y z^{2}=0
$$

Four Exercises

Question 1: Solve the system of polynomial equations

$$
x^{2}=y^{2}=x z-y z^{2}=0
$$

Question 2: Determine all functions $\phi(x, y, z)$ satisfying the PDE

$$
\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{\partial^{2} \phi}{\partial y^{2}}=\frac{\partial^{2} \phi}{\partial x \partial z}-\frac{\partial^{3} \phi}{\partial y \partial z^{2}}=0
$$

We identify polynomials with linear PDE with constant coefficients.

Four Exercises

Question 1: Solve the system of polynomial equations

$$
x^{2}=y^{2}=x z-y z^{2}=0
$$

Question 2: Determine all functions $\phi(x, y, z)$ satisfying the PDE

$$
\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{\partial^{2} \phi}{\partial y^{2}}=\frac{\partial^{2} \phi}{\partial x \partial z}-\frac{\partial^{3} \phi}{\partial y \partial z^{2}}=0
$$

We identify polynomials with linear PDE with constant coefficients.
Question 3: Which polynomials lie in the ideal

$$
I=\left\langle x^{2}, y^{2}, x-y z\right\rangle \cap\left\langle x^{2}, y^{2}, z\right\rangle ?
$$

Four Exercises

Question 1: Solve the system of polynomial equations

$$
x^{2}=y^{2}=x z-y z^{2}=0
$$

Question 2: Determine all functions $\phi(x, y, z)$ satisfying the PDE

$$
\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{\partial^{2} \phi}{\partial y^{2}}=\frac{\partial^{2} \phi}{\partial x \partial z}-\frac{\partial^{3} \phi}{\partial y \partial z^{2}}=0
$$

We identify polynomials with linear PDE with constant coefficients.
Question 3: Which polynomials lie in the ideal

$$
I=\left\langle x^{2}, y^{2}, x-y z\right\rangle \cap\left\langle x^{2}, y^{2}, z\right\rangle ?
$$

Question 4: We presented a subscheme of affine 3-space. Describe it.

Four Solutions

Answer 1: Our equations $x^{2}=y^{2}=x z-y z^{2}=0$ define the z-axis:

$$
x=y=0
$$

Answer 2: A sufficiently differentiable function p satisfies

$$
\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{\partial^{2} \phi}{\partial y^{2}}=\frac{\partial^{2} \phi}{\partial x \partial z}-\frac{\partial^{3} \phi}{\partial y \partial z^{2}}=0
$$

if and only if it decomposes into four summands as follows:

$$
\phi(x, y, z)=\xi(z)+\left(y \psi(z)+x \psi^{\prime}(z)\right)+\alpha x y+\beta x .
$$

Four Solutions

Answer 1: Our equations $x^{2}=y^{2}=x z-y z^{2}=0$ define the z-axis:

$$
x=y=0
$$

Answer 2: A sufficiently differentiable function p satisfies

$$
\frac{\partial^{2} \phi}{\partial x^{2}}=\frac{\partial^{2} \phi}{\partial y^{2}}=\frac{\partial^{2} \phi}{\partial x \partial z}-\frac{\partial^{3} \phi}{\partial y \partial z^{2}}=0
$$

if and only if it decomposes into four summands as follows:

$$
\phi(x, y, z)=\xi(z)+\left(y \psi(z)+x \psi^{\prime}(z)\right)+\alpha x y+\beta x .
$$

Answer 3: A polynomial f lies in $I=\left\langle x^{2}, y^{2}, x-y z\right\rangle \cap\left\langle x^{2}, y^{2}, z\right\rangle$ if and only if the following four conditions hold: Both f and $\frac{\partial f}{\partial y}+z \frac{\partial f}{\partial x}$ vanish on the z-axis, and both $\frac{\partial^{2} f}{\partial x \partial y}$ and $\frac{\partial f}{\partial x}$ vanish at the origin.

Answer 4: The scheme is a double z-axis with an embedded point of length two at the origin. The arithmetic multiplicity of I is four.

Prime Ideals

Let P be a prime ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and $V(P)$ its variety in \mathbb{C}^{n}. A polynomial f is in the ideal P if and only if f vanishes on $V(P)$. Setting $x_{i}=\partial_{z_{i}}$, view P as PDE for an unknown function $\phi\left(z_{1}, \ldots, z_{n}\right)$.

Remark

For $y \in \mathbb{C}^{n}$, the exponential function

$$
z \mapsto \exp \left(y^{t} z\right)=\exp \left(y_{1} z_{1}+\cdots+y_{n} z_{n}\right)
$$

satisfies the $P D E$ given by P if and only if $\mathrm{y} \in V(P)$.

Prime Ideals

Let P be a prime ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ and $V(P)$ its variety in \mathbb{C}^{n}. A polynomial f is in the ideal P if and only if f vanishes on $V(P)$. Setting $x_{i}=\partial_{z_{i}}$, view P as PDE for an unknown function $\phi\left(z_{1}, \ldots, z_{n}\right)$.

Remark

For $y \in \mathbb{C}^{n}$, the exponential function

$$
z \mapsto \exp \left(y^{t} z\right)=\exp \left(y_{1} z_{1}+\cdots+y_{n} z_{n}\right)
$$

satisfies the $P D E$ given by P if and only if $\mathrm{y} \in V(P)$.
Proposition
Each solution to P admits an integral representation

$$
\phi(\mathrm{z})=\int_{V(P)} \exp \left(\mathrm{y}^{t} \mathrm{z}\right) d \mu(\mathrm{y})
$$

where μ is a measure on the irreducible variety $V(P)$.

Primary Ideals

$$
m=\operatorname{length}\left(R_{P} / Q R_{P}\right)=\frac{\operatorname{degree}(Q)}{\operatorname{degree}(P)}
$$

Fix a prime P of codimension c in $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, in Noether position. Write $\mathbb{F}=\mathbb{C}\left(u_{1}, \ldots, u_{n}\right)$ for the field of fractions of R / P.

Theorem
The following sets are in bijective correspondences:
(a) P-primary ideals Q in R of multiplicity m,
(b) points in the punctual Hilbert scheme $\operatorname{Hilb}^{m}\left(\mathbb{F}\left[\left[y_{1}, \ldots, y_{c}\right]\right]\right)$,
(c) m-dimensional \mathbb{F}-subspaces of $\mathbb{F}\left[z_{1}, \ldots, z_{c}\right]$ that are closed under differentiation,

Primary Ideals

$$
m=\operatorname{length}\left(R_{P} / Q R_{P}\right)=\frac{\operatorname{degree}(Q)}{\operatorname{degree}(P)}
$$

Fix a prime P of codimension c in $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, in Noether position. Write $\mathbb{F}=\mathbb{C}\left(u_{1}, \ldots, u_{n}\right)$ for the field of fractions of R / P.

Theorem
The following sets are in bijective correspondences:
(a) P-primary ideals Q in R of multiplicity m,
(b) points in the punctual Hilbert scheme $\operatorname{Hilb}^{m}\left(\mathbb{F}\left[\left[y_{1}, \ldots, y_{c}\right]\right]\right)$,
(c) m-dimensional \mathbb{F}-subspaces of $\mathbb{F}\left[z_{1}, \ldots, z_{c}\right]$ that are closed under differentiation,
(d) m-dimensional \mathbb{F}-subspaces of the Weyl-Noether module $\mathbb{F} \otimes_{R} D_{n, c}$ that are R-bi-modules, where $D_{n, c}=R\left\langle\partial_{x_{1}}, \ldots, \partial_{x_{c}}\right\rangle$.

Any basis of the \mathbb{F}-subspace in (d) lifts to Noetherian operators $A_{1}, \ldots, A_{m} \in D_{n, c}$. These characterize ideal membership in Q.

Ehrenpreis-Palamodov

Each A_{l} in $D_{n, c}$ is written uniquely as $\sum_{\alpha, \beta} c_{\alpha, \beta} \mathrm{x}^{\alpha} \partial_{x}^{\beta}$.
Replace ∂_{x} by z to get polynomials

$$
B_{l}(x, z):=\left.A_{l}\left(x, \partial_{x}\right)\right|_{\partial_{x_{1}} \mapsto z_{1}, \ldots, \partial_{x_{c} \mapsto} \mapsto z_{c}} \quad \text { for } \quad I=1, \ldots, m .
$$

The Noetherian multipliers B_{1}, \ldots, B_{m} span the inverse system (c).

Ehrenpreis-Palamodov

Each A_{l} in $D_{n, c}$ is written uniquely as $\sum_{\alpha, \beta} c_{\alpha, \beta} \mathrm{x}^{\alpha} \partial_{x}^{\beta}$.
Replace ∂_{x} by z to get polynomials

$$
B_{l}(\mathrm{x}, \mathrm{z}):=\left.A_{l}\left(\mathrm{x}, \partial_{\mathrm{x}}\right)\right|_{\partial_{x_{1} \mapsto z_{1}}, \ldots, \partial_{x_{c} \mapsto z_{c}}} \quad \text { for } \quad I=1, \ldots, m .
$$

The Noetherian multipliers B_{1}, \ldots, B_{m} span the inverse system (c).

Theorem (Ehrenpreis-Palamodov Fundamental Principle)
Consider the PDE given by a P-primary ideal Q.
Any sufficiently nice solution ψ has an integral representation

$$
\psi(\mathrm{z})=\sum_{l=1}^{m} \int_{V(P)} B_{l}(\mathrm{x}, \mathrm{z}) \exp \left(\mathrm{x}^{t} \mathrm{z}\right) d \mu_{l}(\mathrm{x})
$$

for suitable measures $\mu_{\text {I }}$ supported in the variety $V(P)$.
Conversely, all such functions are solutions.

From (a) to (d)

Algorithm (From ideal generators to Noetherian operators) Input: Generators of a P-primary ideal Q in $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Output: Operators A_{1}, \ldots, A_{m} in the relative Weyl algebra $D_{n, c}$ with $Q=\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]: A_{i} \bullet f \in P\right.$ for all $\left.i\right\}$.

Set $\quad \gamma: R \hookrightarrow \mathbb{F}\left[y_{1}, \ldots, y_{c}\right], \quad \begin{array}{cccc}x_{i} & \mapsto & y_{i}+u_{i} & \text { for } 1 \leq i \leq c, \\ x_{j} & \mapsto & u_{j} & \text { for } c+1 \leq j \leq n .\end{array}$

From (a) to (d)

Algorithm (From ideal generators to Noetherian operators) Input: Generators of a P-primary ideal Q in $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Output: Operators A_{1}, \ldots, A_{m} in the relative Weyl algebra $D_{n, c}$ with $Q=\left\{f \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]: A_{i} \bullet f \in P\right.$ for all $\left.i\right\}$. Set $\gamma: R \hookrightarrow \mathbb{F}\left[y_{1}, \ldots, y_{c}\right], \quad \begin{array}{lll}x_{i} & \mapsto & y_{i}+u_{i} \\ x_{j} & \mapsto & \text { for } 1 \leq i \leq c, \\ u_{j}\end{array} \quad$ for $c+1 \leq j \leq n$.

1. Find generators of the 0 -dim'। ideal $I=\left\langle y_{1}, \ldots, y_{c}\right\rangle^{m}+\gamma(Q)$.
2. Using linear algebra over $\mathbb{F}=\mathbb{C}\left(u_{1}, \ldots, u_{n}\right)$, compute a basis $\left\{B_{1}, \ldots, B_{m}\right\}$ for the inverse system I^{\perp} in $\mathbb{F}\left[z_{1}, \ldots, z_{c}\right]$.
3. Lift $B_{i}(\mathrm{u}, \mathrm{z})$ to obtain the Noetherian multipliers $B_{i}(\mathrm{x}, \mathrm{z})$.
4. Replace z by ∂_{x} to get the Noetherian operators $A_{i}\left(\mathrm{x}, \partial_{\mathrm{x}}\right)$.

Available in Macaulay2, as part of J. Chen, Y. Cid-Ruiz, M. Härkönen,
R. Krone, A. Leykin: Noetherian operators in Macaulay2, January 2021.

Operators versus Multipliers

Input: Primary ideal $Q=\left\langle x_{1}^{2}, x_{2}^{2}, x_{1}-x_{2} x_{3}\right\rangle$.
Here $n=3, c=m=2$ and $P=\left\langle x_{1}, x_{2}\right\rangle$.
Output in Step 4: The Noetherian operators

$$
A_{1}\left(x, \partial_{x}\right)=1 \quad \text { and } \quad A_{2}\left(x, \partial_{x}\right)=x_{3} \partial_{x_{1}}+\partial_{x_{2}}
$$

Output in Step 3: The Noetherian multipliers

$$
B_{1}(x, z)=1 \quad \text { and } \quad B_{2}(x, z)=x_{3} z_{1}+z_{2}
$$

Operators versus Multipliers

Input: Primary ideal $Q=\left\langle x_{1}^{2}, x_{2}^{2}, x_{1}-x_{2} x_{3}\right\rangle$.

$$
\text { Here } n=3, c=m=2 \text { and } P=\left\langle x_{1}, x_{2}\right\rangle
$$

Output in Step 4: The Noetherian operators

$$
A_{1}\left(x, \partial_{x}\right)=1 \quad \text { and } \quad A_{2}\left(x, \partial_{x}\right)=x_{3} \partial_{x_{1}}+\partial_{x_{2}}
$$

Output in Step 3: The Noetherian multipliers

$$
B_{1}(x, z)=1 \quad \text { and } \quad B_{2}(x, z)=x_{3} z_{1}+z_{2}
$$

Ehrenpreis-Palamodov: Solutions to $\phi_{z_{1} z_{1}}=\phi_{z_{2} z_{2}}=\phi_{z_{1}}-\phi_{z_{2} z_{3}}=0$:

$$
\begin{aligned}
& \phi_{1}(z)=\int 1 \cdot \exp \left(0 z_{1}+0 z_{2}+x_{3} z_{3}\right) d \mu_{x}=\xi\left(z_{3}\right) \\
& \phi_{2}(z)=\int\left(z_{2}+z_{1} x_{3}\right) \cdot \exp \left(0 z_{1}+0 z_{2}+x_{3} z_{3}\right) d \mu_{x} \\
&=z_{2} \int \exp \left(0 z_{1}+0 z_{2}+x_{3} z_{3}\right) d \mu_{x}+z_{1} \int x_{3} \exp \left(0 z_{1}+0 z_{2}+x_{3} z_{3}\right) d \mu_{x} \\
&=c \mid a n d \\
& z_{2} \psi\left(z_{3}\right)+z_{1} \psi^{\prime}\left(z_{3}\right) .
\end{aligned}
$$

Gröbner's Dream

Consider any ideal $I \subset R$ with associated primes P_{1}, \ldots, P_{k}. Its arithmetic multiplicity is amult $(I)=\sum_{j=1}^{k} \operatorname{mult}_{l}\left(P_{j}\right)$, where

$$
\operatorname{mult}_{l}(P)=\frac{\text { degree(saturate }(I, P) / I)}{\operatorname{degree}(P))}
$$

is the length of the largest ideal of finite length in $R_{P} / I R_{P}$.
A differential primary decomposition of I is a list $\left(P_{1}, \mathcal{A}_{1}\right), \ldots,\left(P_{k}, \mathcal{A}_{k}\right)$ where \mathcal{A}_{i} is a finite subset of $D_{n, n}$ with

$$
I=\left\{f \in R \mid \delta \bullet f \in P_{i} \text { for all } \delta \in \mathcal{A}_{i} \text { and } i=1, \ldots, k\right\}
$$

Gröbner's Dream

Consider any ideal $I \subset R$ with associated primes P_{1}, \ldots, P_{k}. Its arithmetic multiplicity is amult $(I)=\sum_{j=1}^{k} \operatorname{mult}_{l}\left(P_{j}\right)$, where

$$
\operatorname{mult}_{l}(P)=\frac{\text { degree(saturate }(I, P) / I)}{\operatorname{degree}(P))}
$$

is the length of the largest ideal of finite length in $R_{P} / I R_{P}$.
A differential primary decomposition of I is a list
$\left(P_{1}, \mathcal{A}_{1}\right), \ldots,\left(P_{k}, \mathcal{A}_{k}\right)$ where \mathcal{A}_{i} is a finite subset of $D_{n, n}$ with

$$
I=\left\{f \in R \mid \delta \bullet f \in P_{i} \text { for all } \delta \in \mathcal{A}_{i} \text { and } i=1, \ldots, k\right\}
$$

Theorem
The size of a differential primary decomposition is at least amult (I), and this lower bound is tight. More precisely:
(i) The ideal I has a differential primary decomposition $\left(P_{1}, \mathcal{A}_{1}\right), \ldots,\left(P_{k}, \mathcal{A}_{k}\right)$ such that $\left|\mathcal{A}_{i}\right|=\operatorname{mult}_{l}\left(P_{i}\right)$.
(ii) If $\left(P_{1}, \mathcal{A}_{1}\right), \ldots,\left(P_{k}, \mathcal{A}_{k}\right)$ is any differential primary decomposition for I, then $\left|\mathcal{A}_{i}\right| \geq \operatorname{mult}_{l}\left(P_{i}\right)$.

Macaulay 2

Computing a minimal differential primary decomposition:

$$
\begin{aligned}
& \text { i1 : load "modulesNoetherianOperators.m2" } \\
& \text { i2 : } R=Q Q[x, y, z] \\
& \text { i3 : I = ideal(} \left.x^{\wedge} 2, y^{\wedge} 2, x * z-y * z^{\wedge} 2\right) \text {; } \\
& \text { i4 : amult(I) } \\
& 04=4 \\
& \text { i5 : netList solvePDE(I) }
\end{aligned}
$$

This is Answer $2 \& 3$ for our double line:

$$
\begin{aligned}
& P_{1}=\langle x, y\rangle, \mathcal{A}_{1}=\left\{1, z \partial_{x}+\partial_{y}\right\} \\
& P_{2}=\langle x, y, z\rangle, \mathcal{A}_{2}=\left\{\partial_{x}, \partial_{x} \partial_{y}\right\}
\end{aligned}
$$

Modules

The treatment of Ehrenpreis-Palamodov in books on analysis emphasizes PDE for vector-valued functions $\psi: \mathbb{C}^{n} \rightarrow \mathbb{C}^{k}$.
[J.-E. Björk: Rings of Differential Operators], [L. Hörmander: An Introduction to Complex Analysis in Several Variables]

In calculus we learn how to rewrite one higher-order ODE as a system of first order ODE, and in algebraic geometry we learn how to appreciate matrix representations of geometric objects:

A system of ℓ linear PDE for ψ is represented by a $k \times \ell$ matrix with entries in $R=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. The image of this matrix is a submodule M of R^{k}. Primary decomposition makes sense here:

$$
M=M_{1} \cap \cdots \cap M_{k} .
$$

Coherent Sheaves

Let $M \subset R^{2}$ be the module spanned by the columns of

$$
\left[\begin{array}{ccc}
\partial_{1} \partial_{3} & \partial_{1} \partial_{2} & \partial_{1}^{2} \partial_{2} \\
\partial_{1}^{2} & \partial_{2}^{2} & \partial_{1}^{2} \partial_{4}
\end{array}\right]
$$

This represents PDE for functions $\psi: \mathbb{C}^{4} \rightarrow \mathbb{C}^{2}$. We seek $\psi(z)=\left(\psi_{1}\left(z_{1}, z_{2}, z_{3}, z_{4}\right), \psi_{2}\left(z_{1}, z_{2}, z_{3}, z_{4}\right)\right)$ such that

$$
\frac{\partial^{2} \psi_{1}}{\partial z_{1} \partial z_{3}}+\frac{\partial^{2} \psi_{2}}{\partial z_{1}^{2}}=\frac{\partial^{2} \psi_{1}}{\partial z_{1} \partial z_{2}}+\frac{\partial^{2} \psi_{2}}{\partial z_{2}^{2}}=\frac{\partial^{3} \psi_{1}}{\partial z_{1}^{2} \partial z_{2}}+\frac{\partial^{3} \psi_{2}}{\partial z_{1}^{2} \partial z_{4}}=0
$$

The module M has six associated primes, namely $P_{1}=\left\langle\partial_{1}\right\rangle$, $P_{2}=\left\langle\partial_{2}, \partial_{4}\right\rangle, P_{3}=\left\langle\partial_{2}, \partial_{3}\right\rangle, P_{4}=\left\langle\partial_{1}, \partial_{3}\right\rangle, P_{5}=\left\langle\partial_{1}, \partial_{2}\right\rangle$, $P_{6}=\left\langle\partial_{1}^{2}-\partial_{2} \partial_{3}, \partial_{1} \partial_{2}-\partial_{3} \partial_{4}, \partial_{2}^{2}-\partial_{1} \partial_{4}\right\rangle$. Primes P_{4}, P_{5} are embedded. Arithmetic multiplicity: $1+1+1+1+4+1=9=\operatorname{amult}(M)$.

To solve the PDE, we compute a differential primary decomposition.

Macaulay $2 \quad \frac{\partial^{2} \psi_{1}}{\partial z_{1} \partial z_{3}}+\frac{\partial^{2} \psi_{2}}{\partial z_{1}^{2}}=\frac{\partial^{2} \psi_{1}}{\partial z_{1} \partial z_{2}}+\frac{\partial^{2} \psi_{2}}{\partial z_{2}^{2}}=\frac{\partial^{3} \psi_{1}}{\partial z_{1}^{2} \partial z_{2}}+\frac{\partial^{3} \psi_{2}}{\partial z_{1}^{2} \partial z_{4}}=0$
i1 : load "modulesNoetherianOperators.m2"
i2 : $R=Q Q[x 1, x 2, x 3, x 4]$
i3 : $M=$ image matrix $\{$ $\{x 1 * x 3, \times 1 * x 2, \times 1 \wedge 2 * x 2\}$, \{ $\left.\left.x 1^{\wedge} 2, \times 2^{\wedge} 2, x 1^{\wedge} 2 * x 4\right\}\right\} ;$
i4 : amult(M)
$04=9$
i5 : S = solvePDE(M)
$05=\left\{\right.$ ideal $\times 1,\left\{\begin{array}{ccc}\mid & 1 & \mid \\ \mid & 0 & \mid\end{array}\right\}$

$$
\begin{aligned}
& \text { \{ideal }\left(x 2^{2}-x 1 * x 4, x 1 * x 2-x 3 * x 4, x 1^{2}-x 2 * x 3\right),\left\{\begin{array}{l}
\left.\left.\left|\begin{array}{l}
-x 4 \\
\mid x 2
\end{array}\right|\right\}\right\}
\end{array}\right. \\
& \text { \{ideal (x4, x2), } \underset{|c|}{\left.\left.\left|\begin{array}{l}
-x 1 \\
\mid x 3
\end{array}\right|\right\}\right\}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { \{ideal (x3, x2), }\left\{\begin{array}{lll}
\mid & 1 & \mid\}\} \\
0 & \mid
\end{array}\right\} \\
& \text { \{ideal (x3, x1), } \left.\left.\underset{\mid}{\mid} \begin{array}{l}
-\mathrm{d} \times 1 \times 2
\end{array} \right\rvert\,\right\}
\end{aligned}
$$

Solutions $\left(\psi_{1}, \psi_{2}\right)$?

For Students

Wolfgang Gröbner

GRADUATE STUDIES 91 IN MATHEMATICS

Invitation to Nonlinear Algebra

Mateusz Michałek Bernd Sturmfels

Theorem 3.27. Let I be a zero-dimensional ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, here interpreted as a system of linear PDEs. The space of holomorphic solutions has dimension equal to the degree of I. There exist nonzero polynomial solutions if and only if the maximal ideal $M=\left\langle x_{1}, \ldots, x_{n}\right\rangle$ is an associated prime of I. In that case, the polynomial solutions are precisely the solutions to the system of PDEs given by the M-primary component $\left(I:\left(I: M^{\infty}\right)\right)$.

Calculus Homework

Given three distinct integers $a, b, c>0$, describe the space of all functions $\phi=\phi(x, y, z)$ that satisfy the three PDE

$$
\frac{\partial^{a} \phi}{\partial x^{a}}+\frac{\partial^{a} \phi}{\partial y^{a}}+\frac{\partial^{a} \phi}{\partial z^{a}}=\frac{\partial^{b} \phi}{\partial x^{b}}+\frac{\partial^{b} \phi}{\partial y^{b}}+\frac{\partial^{b} \phi}{\partial z^{b}}=\frac{\partial^{c} \phi}{\partial x^{c}}+\frac{\partial^{c} \phi}{\partial y^{c}}+\frac{\partial^{c} \phi}{\partial z^{c}}=0 .
$$

For $(a, b, c)=(1,2,3)$ get $\phi=(x-y)(x-z)(y-z)$ and its derivatives. To gain insight, start with $(a, b, c)=(2,5,8)$.

Due Date: Tomorrow

Submit your solution to: bernd@mis.mpg.de No late homework, please

Many thanks for your attention!

