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History
In his 1938 article on foundations of algebraic geometry, Gröbner
introduced differential operators to characterize membership in
a polynomial ideal. He derived this for zero-dimensional ideals
(Macaulay’s inverse systems), and he envisioned it for all ideals.
Gröbner wanted algorithmic solutions. We provide them.

Wolfgang Gröbner: Über die algebraischen Eigenschaften der Integrale
von linearen Differentialgleichungen mit konstanten Koeffizienten,

Monatshefte für Mathematik und Physik (1939)

Analysts made substantial contributions to this subject.

In the 1960s, Ehrenpreis and Palamodov studied solutions
to linear partial differential equations (PDE) with constant
coefficients. A main step was the characterization of
membership in a primary ideal by Noetherian operators.

Their celebrated Fundamental Principle appears in the books

Leon Ehrenpreis: Fourier Analysis in Several Complex Variables, 1970

Victor Palamodov: Linear Differential Operators w Constant Coeffs, 1970
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Four Exercises

Question 1: Solve the system of polynomial equations

x2 = y2 = xz − yz2 = 0.

Question 2: Determine all functions φ(x , y , z) satisfying the PDE

∂2φ

∂x2
=

∂2φ

∂y2
=

∂2φ

∂x∂z
− ∂3φ

∂y∂z2
= 0.

We identify polynomials with linear PDE with constant coefficients.

Question 3: Which polynomials lie in the ideal

I = 〈x2, y2, x − yz〉 ∩ 〈x2, y2, z〉 ?

Question 4: We presented a subscheme of affine 3-space. Describe it.
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Four Solutions

Answer 1: Our equations x2 = y2 = xz − yz2 = 0 define the z-axis:

x = y = 0.

Answer 2: A sufficiently differentiable function p satisfies

∂2φ
∂x2

= ∂2φ
∂y2 = ∂2φ

∂x∂z −
∂3φ
∂y∂z2

= 0

if and only if it decomposes into four summands as follows:

φ(x , y , z) = ξ(z) +
(
yψ(z) + xψ′(z)

)
+ αxy + βx .

Answer 3: A polynomial f lies in I = 〈x2, y2, x−yz〉 ∩ 〈x2, y2, z〉 if
and only if the following four conditions hold: Both f and ∂f

∂y + z ∂f∂x
vanish on the z-axis, and both ∂2f

∂x∂y and ∂f
∂x vanish at the origin.

Answer 4: The scheme is a double z-axis with an embedded point

of length two at the origin. The arithmetic multiplicity of I is four.
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Prime Ideals

Let P be a prime ideal in C[x1, . . . , xn] and V (P) its variety in Cn.
A polynomial f is in the ideal P if and only if f vanishes on V (P).

Setting xi = ∂zi , view P as PDE for an unknown function φ(z1, . . . , zn).

Remark
For y ∈ Cn, the exponential function

z 7→ exp(ytz) = exp(y1z1 + · · ·+ ynzn)

satisfies the PDE given by P if and only if y ∈ V (P).

Proposition

Each solution to P admits an integral representation

φ(z) =

∫

V (P)
exp

(
yt z
)
dµ(y),

where µ is a measure on the irreducible variety V (P).
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Primary Ideals
m = length

(
RP/QRP

)
=

degree(Q)

degree(P)
.

Fix a prime P of codimension c in R = C[x1, . . . , xn], in Noether
position. Write F = C(u1, . . . , un) for the field of fractions of R/P.

Theorem
The following sets are in bijective correspondences:

(a) P-primary ideals Q in R of multiplicity m,

(b) points in the punctual Hilbert scheme Hilbm(F[[y1, . . . , yc ]]),

(c) m-dimensional F-subspaces of F[z1, . . . , zc ]
that are closed under differentiation, Inverse systems

(d) m-dimensional F-subspaces of the Weyl-Noether module
F⊗R Dn,c that are R-bi-modules, where Dn,c = R〈∂x1 , . . . , ∂xc 〉.

Any basis of the F-subspace in (d) lifts to Noetherian operators
A1, . . . ,Am ∈ Dn,c . These characterize ideal membership in Q.
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Ehrenpreis-Palamodov

Each Al in Dn,c is written uniquely as
∑

α,β cα,βxα∂βx .

Replace ∂x by z to get polynomials

Bl(x, z) := Al(x, ∂x)|∂x1 7→z1,...,∂xc 7→zc for l = 1, . . . ,m.

The Noetherian multipliers B1, . . . ,Bm span the inverse system (c).

Theorem (Ehrenpreis-Palamodov Fundamental Principle)

Consider the PDE given by a P-primary ideal Q.

Any sufficiently nice solution ψ has an integral representation

ψ(z) =
m∑

l=1

∫

V (P)
Bl (x, z) exp

(
xt z
)
dµl(x)

for suitable measures µl supported in the variety V (P).

Conversely, all such functions are solutions.
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From (a) to (d)

Algorithm (From ideal generators to Noetherian operators)

Input: Generators of a P-primary ideal Q in R = C[x1, . . . , xn].

Output: Operators A1, . . . ,Am in the relative Weyl algebra Dn,c

with Q = { f ∈ C[x1, . . . , xn] : Ai • f ∈ P for all i }.

Set γ : R ↪→ F[y1, . . . , yc ] ,
xi 7→ yi + ui for 1 ≤ i ≤ c ,
xj 7→ uj for c + 1 ≤ j ≤ n.

1. Find generators of the 0-dim’l ideal I = 〈y1, . . . , yc〉m + γ(Q).

2. Using linear algebra over F = C(u1, . . . , un), compute a basis
{B1, . . . ,Bm} for the inverse system I⊥ in F[z1, . . . , zc ].

3. Lift Bi (u, z) to obtain the Noetherian multipliers Bi (x, z).

4. Replace z by ∂x to get the Noetherian operators Ai (x, ∂x).

Available in Macaulay2, as part of J. Chen, Y. Cid-Ruiz, M. Härkönen,
R. Krone, A. Leykin: Noetherian operators in Macaulay2, January 2021.
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Operators versus Multipliers
Input: Primary ideal Q = 〈x21 , x22 , x1 − x2x3〉.

Here n = 3, c = m = 2 and P = 〈x1, x2〉.

Output in Step 4: The Noetherian operators

A1(x , ∂x) = 1 and A2(x , ∂x) = x3∂x1 + ∂x2 .

Output in Step 3: The Noetherian multipliers

B1(x , z) = 1 and B2(x , z) = x3z1 + z2.

Ehrenpreis-Palamodov: Solutions to φz1z1 = φz2z2 = φz1−φz2z3 = 0:

φ1(z) =

∫
1 · exp(0z1 +0z2 +x3z3) dµx = ξ(z3) and

φ2(z) =
∫

(z2 + z1x3) · exp(0z1 + 0z2 + x3z3) dµx
= z2

∫
exp(0z1+0z2+x3z3)dµx + z1

∫
x3 exp(0z1+0z2+x3z3)dµx

= z2 ψ(z3) + z1 ψ
′(z3).
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Gröbner’s Dream
Consider any ideal I ⊂ R with associated primes P1, . . . ,Pk . Its
arithmetic multiplicity is amult(I ) =

∑k
j=1multI (Pj), where

multI (P) =
degree(saturate(I, P)/I)

degree(P))

is the length of the largest ideal of finite length in RP/IRP .

A differential primary decomposition of I is a list
(P1,A1), . . . , (Pk ,Ak) where Ai is a finite subset of Dn,n with

I =
{
f ∈ R | δ • f ∈ Pi for all δ ∈ Ai and i = 1, . . . , k

}
.

Theorem
The size of a differential primary decomposition is at least
amult(I ), and this lower bound is tight. More precisely:

(i) The ideal I has a differential primary decomposition
(P1,A1), . . . , (Pk ,Ak) such that |Ai | = multI (Pi ).

(ii) If (P1,A1), . . . , (Pk ,Ak) is any differential primary
decomposition for I , then |Ai | ≥ multI (Pi ).
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Macaulay 2

Computing a minimal differential primary decomposition:

i1 : load "modulesNoetherianOperators.m2"

i2 : R = QQ[x,y,z]

i3 : I = ideal(x^2,y^2,x*z-y*z^2);

i4 : amult(I)

o4 = 4

i5 : netList solvePDE(I)

     +---------------+-------------------+
o5 = |ideal (y, x)   |{| 1 |, | dxz+dy |}|
     +---------------+-------------------+
     |ideal (z, y, x)|{| dx |, | dxdy |} |
     +---------------+-------------------+

This is Answer 2 & 3 for our double line:
P1 = 〈x , y〉 , A1 = {1, z∂x + ∂y}
P2 = 〈x , y , z〉 , A2 = {∂x , ∂x∂y}



Modules
The treatment of Ehrenpreis-Palamodov in books on analysis
emphasizes PDE for vector-valued functions ψ : Cn → Ck .

[J.-E. Björk: Rings of Differential Operators], [L. Hörmander:
An Introduction to Complex Analysis in Several Variables]

In calculus we learn how to rewrite one higher-order ODE as a
system of first order ODE, and in algebraic geometry we learn
how to appreciate matrix representations of geometric objects:

Ideals −→ Schemes
Modules −→ Coherent Sheaves

A system of ` linear PDE for ψ is represented by a k × ` matrix
with entries in R = C[x1, . . . , xn]. The image of this matrix is a
submodule M of Rk . Primary decomposition makes sense here:

M = M1 ∩ · · · ∩Mk .

... and so does differential primary decomposition



Coherent Sheaves

Let M ⊂ R2 be the module spanned by the columns of

[
∂1∂3 ∂1∂2 ∂21∂2
∂21 ∂22 ∂21∂4

]
.

This represents PDE for functions ψ : C4 → C2. We seek
ψ(z) =

(
ψ1(z1, z2, z3, z4), ψ2(z1, z2, z3, z4)

)
such that

∂2ψ1

∂z1∂z3
+
∂2ψ2

∂z21
=

∂2ψ1

∂z1∂z2
+
∂2ψ2

∂z22
=

∂3ψ1

∂z21∂z2
+

∂3ψ2

∂z21∂z4
= 0.

The module M has six associated primes, namely P1 = 〈∂1〉,
P2 = 〈∂2, ∂4〉, P3 = 〈∂2, ∂3〉, P4 = 〈∂1, ∂3〉, P5 = 〈∂1, ∂2〉,
P6 = 〈∂21 − ∂2∂3, ∂1∂2 − ∂3∂4, ∂22 − ∂1∂4〉. Primes P4,P5 are

embedded. Arithmetic multiplicity: 1+1+1+1+4+1 = 9 = amult(M).

To solve the PDE, we compute a differential primary decomposition.



Macaulay 2 ∂2ψ1

∂z1∂z3
+ ∂2ψ2

∂z21
= ∂2ψ1

∂z1∂z2
+ ∂2ψ2

∂z22
= ∂3ψ1

∂z21∂z2
+ ∂3ψ2

∂z21∂z4
= 0.

i1 : load "modulesNoetherianOperators.m2"

i2 : R = QQ[x1,x2,x3,x4]

i3 : M = image matrix{
         {x1*x3, x1*x2, x1^2*x2 },
         { x1^2, x2^2, x1^2*x4} };

i4 : amult(M) 

o4 = 9

i5 : S =  solvePDE(M)

o5 = {ideal x1, {| 1 |}}
                 | 0 |

               2                           2
     {ideal (x2  - x1*x4, x1*x2 - x3*x4, x1  - x2*x3), {| -x4 |}}
                                                        | x2  |

     {ideal (x4, x2), {| -x1 |}}
                       | x3  |

     {ideal (x2, x1), {| 0 |, | 0   |, | 0   |, | 0      |}}
                       | 1 |  | dx1 |  | dx2 |  | dx1dx2 |

     {ideal (x3, x2), {| 1 |}}
                       | 0 |

     {ideal (x3, x1), {| -dx1x2 |}}
                       | 1      |

Solutions (ψ1, ψ2)?
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3.3. Linear PDEs with Constant Coe�cients 51

correspond to the 16 exponential solutions in (3.5). The ideal Q is primary
to the maximal ideal rad(Q) = hx, y, zi. Since all associated primes are
minimal, by Theorem 3.22, this primary ideal is uniquely determined by I:

Q =
⌦
x2y, x2z, xy2, xz2, y2z, yz2, x3 � yz, y3 � xz, z3 � xy

↵
.

This zero-dimensional primary ideal has degree 11. It contributes the 11
polynomial solutions to the three partial di↵erential equations in (3.4).

Below is a general result explaining our observations from Example 3.26.

Theorem 3.27. Let I be a zero-dimensional ideal in C[x1, . . . , xn], here
interpreted as a system of linear PDEs. The space of holomorphic solutions
has dimension equal to the degree of I. There exist nonzero polynomial
solutions if and only if the maximal ideal M = hx1, . . . , xni is an associated
prime of I. In that case, the polynomial solutions are precisely the solutions
to the system of PDEs given by the M -primary component (I : (I : M1)).

Proof. Fix a degree compatible monomial order and let in(I) be the initial
ideal of I for that order. The set S of standard monomials is finite. For each
xu 2 S we will construct explicitly a power series solution to the PDE given
by I. We will also show that these solutions form a basis for the space of
holomorphic solutions. These are the solutions represented by power series.

Regarding I as a C-vector space, it has a basis consisting of elements
of the form xv +

P
xu2S �ux

u, where xv 62 S. Consider a polynomial p̃
that is a C-linear combination of monomials in S. We claim that p̃ can be
uniquely extended to a power series p that is a solution to the associated
PDEs. Indeed, the above basis operators uniquely determine the coe�cients
of all other monomials, thus p is unique. Further, p has the property that
when di↵erentiated with any operator from I, the constant term in the result
is zero. Thus, all operators in I annihilate p. Hence, the dimension of the
solution space equals |S| = degree(I). The basis of this space is given by

(3.7) pu(x1, . . . , xn) = xu + higher order terms, where xu runs over S.

The series (3.7) is a polynomial if and only if it is annihilated by (@/@xi)
d

for some d and i = 1, 2, . . . , n. This is always the case when I is M -primary.

Suppose now that I is primary in C[x]. Since I is zero-dimensional, its
radical is the maximal ideal hx1�a1, . . . , xn�ani, where V(I) = {(a1, . . . , an)}
in Cn. By translating (a1, . . . , an) to the origin (0, . . . , 0), we can apply the
analysis in the previous paragraph. From this and Lemma 3.25, we obtain
degree(I) many polynomials pu with xu 2 S as in (3.7) such that

(3.8) pu(x1, . . . , xn) · exp(a1x1 + · · · + anxn)

solves the PDEs given by I. These functions form a basis of the holomorphic
solutions to I. None of them is a polynomial unless (a1, . . . , an) = (0, . . . , 0).



Calculus Homework

Given three distinct integers a, b, c > 0, describe the space
of all functions φ = φ(x , y , z) that satisfy the three PDE

∂aφ

∂xa
+
∂aφ

∂ya
+
∂aφ

∂za
=

∂bφ

∂xb
+
∂bφ

∂yb
+
∂bφ

∂zb
=

∂cφ

∂xc
+
∂cφ

∂y c
+
∂cφ

∂zc
= 0.

For (a, b, c) = (1, 2, 3) get φ = (x−y)(x−z)(y−z) and its derivatives.

To gain insight, start with (a, b, c) = (2, 5, 8).

Due Date: Tomorrow
Submit your solution to: bernd@mis.mpg.de

No late homework, please

Many thanks for your attention!


