Picard-Fuchs equations for Feynman integrals

Pierre Vanhove

Joint PolSys-SpecFun Seminar

 based on work in progress withCharles Doran,
Andrey Novoseltsev

Scattering amplitudes are the fundamental tools for making contact between quantum field theory description of nature and experiments

- Comparing particule physics model against datas from accelators
- Post-Minkowskian expansion for Gravitational wave physics
- Various condensed matter and statistical physics systems

Feynman Integrals: parametric representation

Feynman integral are given by projective space integrals

$$
\Gamma(\underline{v}, D ; \underline{s}, \underline{m})=\int_{\Delta_{n}} \frac{\mathcal{U}_{\Gamma}(\underline{x})^{\omega-\frac{D}{2}}}{\mathcal{F}_{\Gamma}(\underline{x})^{\omega}} \prod_{i=1}^{n} x_{i}^{v_{i}-1} \Omega_{0} \quad \omega=\sum_{i=1}^{n} v_{i}-\frac{D}{2}
$$

with the volume form on \mathbb{P}^{n-1}

$$
\Omega_{0}=\sum_{i=1}^{n}(-1)^{i-1} x^{i} d x^{1} \wedge \cdots \widehat{d x^{i}} \ldots \wedge d x^{n}
$$

The domain of integration is the positive quadrant

$$
\Delta_{n}:=\left\{x_{1} \geqslant 0, \ldots, x_{n} \geqslant 0 \mid\left[x_{1}, \ldots, x_{n}\right] \in \mathbb{P}^{n-1}\right\}
$$

Feynman Integrals: parametric representation

The graph polynomial is homogeneous degree $L+1$ in \mathbb{P}^{n-1}

$$
\mathcal{F}_{\Gamma}(\underline{x})=\mathcal{U}_{\Gamma}(\underline{x}) \times X\left(\underline{m}^{2} ; \underline{x}\right)-\mathcal{V}_{\Gamma}(\underline{s}, \underline{x})
$$

- Homogeneous polynomial of degree L with $u_{a_{1}, \ldots, a_{n}} \in\{0,1\}$

$$
\mathcal{U}_{\Gamma}(\underline{x})=\sum_{\substack{a_{1}+\ldots+a_{n}=L \\ 0 \leqslant a_{i} \leqslant 1}} u_{a_{1}, \ldots, a_{n}} \prod_{i=1}^{n} x_{i}^{a_{i}}
$$

- the hyperplane

$$
X\left(\underline{m}^{2} ; \underline{x}\right):=\sum_{n=1}^{n} m_{i}^{2} x_{i}
$$

- Homogeneous polynomial of degree $L+1$

$$
\mathcal{V}_{\Gamma}(\underline{x})=\sum_{\substack{a_{1}+\cdots+a_{n}=L+1 \\ 0 \leqslant a_{i} \leqslant 1}} S_{a_{i}, \cdots, a_{n}} \prod_{i=1}^{n} x_{i}^{a_{i}}
$$

Feynman Integrals: parametric representation

The integrand is an algebraic differential form in $H^{n-1}\left(\mathbb{P}^{n-1} \backslash \mathbb{X}_{\Gamma}\right)$ on the complement of the graph hypersurface

$$
\mathbb{X}_{\Gamma}:=\left\{\mathcal{U}_{\Gamma}(\underline{x}) \times \mathcal{F}_{\Gamma}(\underline{x})=0, \underline{x} \in \mathbb{P}^{n-1}\right\}
$$

- All the singularities of the Feynman integrals are located on the graph hypersurface
- Generically the graph hypersurface has non-isolated singularities

Feynman integral and periods

The domain of integration Δ_{n} is not an homology cycle because

$$
\partial \Delta_{n} \cap \mathbb{X}_{\Gamma}=\{(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)\}
$$

we have to look at the relative cohomology

$$
H^{\bullet}\left(\mathbb{P}^{n-1} \backslash X_{\Gamma} ; \text { Д }_{n} \backslash Д_{n} \cap \mathbb{X}_{\Gamma}\right)
$$

The normal crossings divisor $\Pi_{n}:=\left\{x_{1} \cdots x_{n}=0\right\}$ and \mathbb{X}_{Γ} are separated by performing a series of iterated blowups of the complement of the graph hypersurface [Bloch, Esnault, Kreimer]

Differential equation

The Feynman integral are period integrals of the relative cohomology after performing the appropriate blow-ups

$$
\mathfrak{M}\left(\underline{s}, \underline{m}^{2}\right):=H^{\bullet}\left(\widetilde{\mathbb{P}^{n-1}} \backslash \widetilde{X_{F}} ; \widetilde{\Lambda_{n}} \backslash \widetilde{\Pi_{n}} \cap \widetilde{X_{\Gamma}}\right)
$$

Since the integrand varies with the physical variables $\left\{S_{a^{i}}, m_{1}^{2}, \ldots, m_{n}^{2}\right\}$ one needs to study a variation of (mixed) Hodge structure

One can show that the Feynman integral are holonomic D-finite functions [Bitoun et al:; Smirnov et al.]
A Feynman integrals satisfies inhomogenous differential equations with respect to any set of variables $\underline{z} \in\left\{S_{a^{i}}, m_{1}^{2}, \ldots, m_{n}^{2}\right\}$

$$
\mathcal{L}_{P F} I_{\Gamma}=\mathcal{S}_{\Gamma}
$$

Generically there is an inhomogeneous term $\delta_{\Gamma} \neq 0$ due to the boundary components $\partial \Delta_{n}$

Feynman integral D-module

We want to address the questions of how to derive

- How can we derive efficiently the complete system of differential equations (i.e. the minimal order PF)

$$
\mathcal{L}_{\mathrm{PF}} I_{\Gamma}=\mathcal{S}_{\Gamma}
$$

- Of which geometry the Feynman integral are period integrals?
- Understand the algebraic geometry that determines the motive $\mathfrak{M}\left(\underline{s}, \underline{m}^{2}\right)$ leading to the above (D-module) of system of differential equations?

The sunset graphs family

The sunset family of graph

The graph polynomial for the n-1-loop sunset with $\omega=D / 2=1$
$\mathcal{F}_{n}^{\ominus}(\underline{x})=x_{1} \cdots x_{n}\left(\phi_{n}^{\ominus}(\underline{x})-p^{2}\right) ; \phi_{n}^{\ominus}(\underline{x})=\left(\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}\right)\left(m_{1}^{2} x_{1}+\cdots+m_{n}^{2} x_{n}\right)$

The Feynman integral in $D=2$ is convergent

$$
\rho_{n}^{\ominus}\left(p^{2}, \underline{m}^{2}\right)=\int_{x_{1} \geqslant 0, \ldots, x_{n} \geqslant 0} \frac{1}{p^{2}-\phi_{n}^{\ominus}(\underline{x})} \prod_{i=1}^{n-1} \frac{d x_{i}}{x_{i}}
$$

The sunset integrals and L-function values

For the special value $p^{2}=m_{1}^{2}=\cdots=m_{n}^{2}=1$ the sunset Feynman integral becomes a pure period integral [Bloch, Kerr, Vanhove]

$$
\ominus_{n}^{\ominus}(1, \ldots, 1)=\int_{x_{i} \geq 0} \frac{\prod_{i=1}^{n-1} d \log x_{i}}{1-\left(\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}\right)\left(x_{1}+\cdots+x_{n}\right)}
$$

- Using impressive numeric experimentations [Broadhust] found that $\eta_{n}(1, \ldots, 1)$ is given by L-function values in the critical band.
- For large n the L-function are from moments Kloosterman sums over finite fields

The sunset integrals and L-function values

For the special value $p^{2}=m_{1}^{2}=\cdots=m_{n}^{2}=1$ the sunset Feynman integral becomes a pure period integral [Bloch, Kerr, Vantove]

$$
P_{n}(1, \ldots, 1)=\int_{x_{i} \geqslant 0} \frac{\prod_{i=1}^{n-1} d \log x_{i}}{1-\left(\frac{1}{x_{1}}+\cdots+\frac{1}{x_{n}}\right)\left(x_{1}+\cdots+x_{n}\right)}
$$

These special values realise explicitly Deligne's conjecture relating period integrals to L-values in the critical band
$n=3$: elliptic curve case : $\boldsymbol{H}_{3}(1, \ldots, 1)=\frac{1}{2} \zeta(2)$
$n=4: K 3$ Picard rank $19: I_{4}(1, \ldots, 1)=\frac{12 \pi}{\sqrt{15}} L\left(f_{K 3}, 2\right)$ [Bloch, Kerr, Vanhove]

- $L\left(f_{K_{3}}, s\right)$ is the L-function of $H^{2}\left(K 3, \mathbb{Q}_{\ell}\right)$ [Peies, Top, v. der Vugut]
- Functional equation $L\left(f_{K 3}, s\right) \propto L\left(f_{K 3}, 3-s\right)$
- $f_{K 3}=\eta(\tau) \eta(3 \tau) \eta(5 \tau) \eta(15 \tau) \sum_{m, n} q^{m^{2}+4 n^{2}+m n}$

The classical sunset period integrals

We can consider the period integral by changing the domain of integration to the torus $\mathbb{T}_{n}=\left\{\left|x_{1}\right|=\cdots=\left|x_{n}\right|=1\right\}$

$$
\pi_{n}^{\ominus}\left(p^{2}, \underline{m}^{2}\right)=\frac{1}{(2 \pi i)^{n}} \int_{\mathbb{T}_{n}} \frac{1}{p^{2}-\phi_{n}^{\ominus}(\underline{x})} \prod_{i=1}^{n-1} \frac{d x_{i}}{x_{i}}
$$

is given by the series in terms of generalized Apéry numbers near $p^{2}=\infty$

$$
\pi_{n}^{\Theta}\left(p^{2}, \underline{m}^{2}\right)=\sum_{m \geqslant 0}\left(p^{2}\right)^{-1-m} \sum_{r_{1}+\cdots+r_{n}=m}\left(\frac{\left(r_{1}+\cdots+r_{n}\right)!}{r_{1}!\cdots r_{n}!}\right)^{2} \prod_{i=1}^{n}\left(m_{i}^{2}\right)^{r_{i}}
$$

The series has been studied in the past by [Verrili].

The classical sunset period integrals

The Feynman integral for $0 \leqslant p^{2} \leqslant\left(m_{1}+\cdots+m_{n}\right)^{2}$

$$
I_{n}^{\ominus}\left(p^{2}, \underline{m}^{2}\right)=2^{n-1} \int_{0}^{\infty} u I_{0}\left(\sqrt{p^{2}} u\right) \prod_{i=1}^{n} K_{0}\left(m_{i} u\right) d u
$$

The classical period for $p^{2} \geqslant\left(m_{1}+\cdots+m_{n}\right)^{2}$

$$
\pi_{n}^{\Theta}\left(p^{2}, \underline{m}^{2}\right)=\frac{1}{2} \int_{0}^{\infty} u K_{0}\left(\sqrt{p^{2}} u\right) \prod_{i=1}^{n} I_{0}\left(m_{i} u\right) d u
$$

where we have the modified Bessel function of the first kind

$$
I_{0}(z)=\frac{1}{2 i \pi} \int_{|t|=1} e^{-\frac{z}{2}\left(t+\frac{1}{t}\right)} d \log t ; \quad K_{0}(z)=\int_{0}^{+\infty} e^{-\frac{z}{2}\left(t+\frac{1}{t}\right)} d \log t
$$

There are exponential period integrals in the sense of the non classical exponential motives of [Fresán, Jossen]. Fascinating quadratic relations satisfied by the Bessel moments generalizing Riemann identity [Broadhurst, Roberts; Zhou; Fresán, Jossen, Sabbah, Yu]

Creative Telescoping

Algorithmes Efficaces en Calcul Formel

Alin Bostan
Frédéric Chyzak Marc Giusti Romain Lebreton Grégoire Lecerf Bruno Salvy

A Fast Approach to Creative Telescoping
Christaph Kouischun

1. Introduction

 2

We want to derive the differential equation

$$
\mathcal{L}_{\mathrm{PF}} \int_{\Gamma} f_{\Gamma}\left(\underline{S}, \underline{m}^{2} ; \underline{x}\right) \Omega_{0}=\mathcal{S}_{\Gamma}
$$

For a given subset of the physical parameters $\underline{z}:=\left(z_{1}, \ldots, z_{r}\right) \subset\left\{S, \underline{m}^{2}\right\}$ we want to construct a differential operator $T_{\underline{z}}$ such that

$$
T_{\underline{z}} \Omega_{\Gamma}=0
$$

such that

$$
T_{\underline{\underline{z}}}=\mathcal{L}_{\mathrm{PF}}\left(\underline{S}, \underline{m}^{2}, \underline{\partial}_{\underline{z}}\right)+\sum_{i=1}^{n} \partial_{x_{i}} Q_{i}\left(\underline{S}, \underline{m}^{2} \underline{\partial}_{\underline{z}} ; \underline{x}, \underline{\partial_{\underline{x}}}\right)
$$

where the finite order differential operator

$$
\mathcal{L}_{\mathrm{PF}}\left(\underline{S}, \underline{m}^{2}, \underline{\partial}_{\underline{z}}\right)=\sum_{\substack{0 \leqslant a_{1} \leqslant 0_{i} \\ 1 \leqslant \leqslant r}} p_{a_{1}, \ldots, a_{r}}\left(\underline{S}, \underline{m}^{2}\right) \prod_{i=1}^{r}\left(\frac{d}{d z_{i}}\right)^{a_{i}}
$$

$$
Q_{i}\left(\underline{S}, \underline{m}^{2}, \underline{\partial_{z}}\right)=\sum_{\substack{0 \leqslant a_{2} \leqslant o_{i}^{\prime} \\ 1 \leqslant \leqslant r}} \sum_{\substack{0 \leqslant b_{i} \in \sigma_{i} \\ 1 \leq \leqslant i}} q_{a_{1}, \ldots, a_{r} r}^{(i)}\left(\underline{S}, \underline{m}^{2}, \underline{x}\right) \prod_{i=1}^{r}\left(\frac{d}{d z_{i}}\right)^{a_{i}} \prod_{i=1}^{n}\left(\frac{d}{d x_{i}}\right)^{b_{i}}
$$

- The orders $o_{i}, o_{i}^{\prime}, \tilde{o}_{i}$ are positive integers
- $p_{a_{1}, \ldots, a_{r}}\left(\underline{S}, \underline{m}^{2}\right)$ polynomials in the kinematic variables
- $q_{a_{1}, \ldots, a_{r}}^{(i)}\left(\underline{S}, \underline{m}^{2}, \underline{x}\right)$ rational functions in the kinematic variable and the projective variables x.

Integrating over a cycle γ gives

$$
0=\oint_{\gamma} T_{\underline{z}} f_{\Gamma} \Omega_{0}=\mathcal{L}_{\mathrm{PF}}\left(\underline{s}, \underline{m}, \partial_{\underline{z}}\right) \oint_{\gamma} f_{\Gamma} \Omega_{0}+\oint_{\gamma} d \beta_{\Gamma}
$$

For a cycle $\oint_{\gamma} d \beta_{\Gamma}=0$ we get

$$
\mathcal{L}_{\mathrm{PF}}\left(\underline{s}, \underline{m}, \partial_{\underline{z}}\right) \oint_{\gamma} f_{\Gamma} \Omega_{0}=0
$$

For the Feynman integral $/ \Gamma$ we have

$$
0=\int_{\Delta_{n}} T_{\underline{z}} f_{\Gamma} \Omega_{0}=\mathcal{L}_{\mathrm{PF}}\left(\underline{s}, \underline{m}, \partial_{\underline{z}}\right) /_{\Gamma}+\int_{\Delta_{n}} d \beta_{\Gamma}
$$

since $\partial \Delta_{n} \neq \emptyset$

$$
\left.\mathcal{L}_{\mathrm{PF}}\left(\underline{s}, \underline{m}, \partial_{\underline{z}}\right)\right|_{\Gamma}=\mathcal{S}_{\Gamma}
$$

This can done using the creative telescoping method introduced by Doron Zeilberger (1990) and the algorithm by F. Chyzak because the Feynman integral are D-finite [Bitoun, Bogner, Klausen, Panzer] This works in all case even when the graph hypersurface does not have isolated singularities (which is the generic case)

This algorithm gives the D-module of annihilator and with the inhomogeneous term

We can use the Creative Telescoping algorithm for exploring the properties of the Feynman integral. This gives some very useful insight in the underlying algebraic geometry (order of the PF operators, their singularities, etc.)

Application: the multiloop sunset integral in $D=2$

In the case of the sunset integral in two dimensions the Bessel representation is a one-dimensional integral $p^{2}<\left(m_{1}+\cdots+m_{n}\right)^{2}$

$$
I_{n}\left(p^{2}, \underline{m}^{2}\right)=2^{n-1} \int_{0}^{\infty} x l_{0}\left(\sqrt{p^{2}} x\right) \prod_{i=1}^{n} K_{0}\left(m_{i} x\right) d x
$$

and the classical period integral for $p^{2}>\left(m_{1}+\cdots+m_{n}\right)^{2}$

$$
\pi_{n}\left(p^{2}, \underline{m}^{2}\right)=2^{n-1} \int_{0}^{\infty} x K_{0}\left(\sqrt{p^{2}} x\right) \prod_{i=1}^{n} I_{0}\left(m_{i} x\right) d x
$$

The Bessel functions I_{0} and K_{0} have the same annihilator. In this case the telescoper reads with

$$
\begin{aligned}
& \underline{z}=\left\{z_{1}, \ldots, z_{r}\right\} \subset\left\{p^{2}, m_{1}^{2}, \ldots, m_{n}^{2}\right\} \\
& T_{z}=\mathcal{L}_{\mathrm{PF}}\left(p^{2}, \underline{m}, \frac{d}{d \underline{z}}\right)+\frac{d}{d x} Q\left(p^{2}, \underline{m}^{2}, x, \frac{d}{d x}, \frac{d}{d \underline{z}}\right)
\end{aligned}
$$

The motivic geometry

Sunset graphs toric variety $X_{p^{2}}\left(A_{n}\right)$

The sunset graph polynomial

$$
\mathcal{F}_{n}^{\ominus}=x_{1} \cdots x_{n}\left(\left(\sum_{i=1}^{n} m_{i}^{2} x_{i}\right)\left(\sum_{i=1}^{n} \frac{1}{x_{i}}\right)-p^{2}\right)
$$

is a character of the adjoint representation of A_{n-1} with support on the polytope generated by the A_{n-1} root lattice

- The Newton polytope Δ_{n} for \mathcal{F}_{n} is reflexive with only the origin as interior point
- The toric variety $X\left(A_{n-1}\right)$ is the graph of the Cremona transformations $X_{i} \rightarrow 1 / X_{i}$ of \mathbb{P}^{n-1}
$X\left(A_{n-1}\right)$ is obtained by blowing up the strict transform of the points, lines, planes etc. spanned by the subset of points $(1,0, \ldots, 0),(0,1,0, \ldots, 0), \ldots,(0, \ldots, 0,1)$ in \mathbb{P}^{n-1}

Two-loop Sunset toric variety $X\left(A_{2}\right)$

$$
\left(m_{1}^{2} x_{1}+m_{2}^{2} x_{2}+m_{3}^{2} x_{3}\right)\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)=p^{2} x_{1} x_{2} x_{3}
$$

- The toric variety is $X\left(A_{2}\right)=B l_{3}\left(\mathbb{P}^{2}\right)=d P_{6}$ blown up at 3 points
- The subfamily of anticanonical hyperspace is non generic The combinatorial structure of the NEF partition describes precisely the mass deformations
- True for all n

Sunset graphs pencils of variety $x_{p^{2}}\left(A_{n}\right)$

For $p^{2} \in \mathbb{P}^{1}$ we define the pencil in the ambient toric variety $X\left(A_{n-1}\right)$

$$
x_{p^{2}}\left(A_{n-1}\right)=\left\{\left(p^{2}, \underline{x}\right) \in \mathbb{P}^{1} \times X\left(A_{n-1}\right) \left\lvert\, x_{1} \cdots x_{n}\left(\sum_{i=1}^{n} m_{i}^{2} x_{i}\right)\left(\sum_{i=1}^{n} \frac{1}{x_{i}}\right)-p^{2} x_{1} \cdots x_{n}=0\right.\right\}
$$

The fiber at $p^{2}=\infty$ is $\Pi_{n}=\left\{x_{1} \cdots x_{n}=0\right\}$

Since \triangle_{n} is linearly equivalent to the anti-canonical divisor of $X\left(A_{n-1}\right)$ the family has trivial canonical divisor: We have a family of (singular) Calabi-Yau $n-2$-fold

This is specific to this family of associated with root lattice of A_{n}

The Iterative fibration

The Iterative fibration

The sunset family $\left(\sum_{i=1}^{n} m_{i}^{2} x_{i}\right)\left(\sum_{i=1}^{n} \frac{1}{x_{i}}\right)-p^{2}=0$ is birational to a complete intersection variety in \mathbb{P}^{n}

$$
\frac{1}{x_{0}}+\sum_{i=1}^{n} \frac{1}{x_{i}}=0 ; \quad p^{2} x_{0}+\sum_{i=1}^{n} m_{i}^{2} x_{i}=0
$$

Obviously $X\left(A_{n-1}\right)$ is obtained from $X\left(A_{n-2}\right)$ with the substitutions

$$
\frac{1}{x_{n-1}} \rightarrow \frac{1}{x_{n-1}}+\frac{1}{x_{n}} ; \quad m_{n-1}^{2} x_{n-1} \rightarrow m_{n-1}^{2} x_{n-1}+m_{n}^{2} x_{n}
$$

$X\left(A_{n-1}\right)$ is fibrered over $X\left(A_{1}\right)=\mathbb{P}^{1}$ with generic fibers $X\left(A_{n-2}\right)$

$$
X\left(A_{n-2}\right) \rightarrow X\left(A_{n-1}\right) \rightarrow X\left(A_{1}\right)=\mathbb{P}^{1}
$$

The Iterative fibration

The geometric phenomenon at work that the n-loop sunset corresponds to a family of Calabi-Yau $(n-1)$-folds each of which is a double cover of the (rational) total space of a family of $(n-1)$-loop sunset Calabi-Yau ($n-2$)-folds.

At the level of the integrals this

$$
\rho_{n}^{\ominus}\left(p^{2}, \underline{m}^{2}\right)=\int_{0}^{+\infty} \rho_{n-1}^{\ominus}\left(p^{2}, \underline{m}^{2},\left(m_{n-1}^{2}+t^{-1} m_{n}^{2}\right)(1+t)\right) d \log t
$$

and for the classical period

$$
\pi_{n}^{\ominus}\left(p^{2}, \underline{m}^{2}\right)=\frac{1}{2 i \pi} \int_{|t|=1} \pi_{n-1}^{\ominus}\left(p^{2}, \underline{m}^{2},\left(m_{n-1}^{2}+t^{-1} m_{n}^{2}\right)(1+t)\right) d \log t
$$

This construction allows to understand the geometry and build the PF operator for all loop orders [Doran, Novoseltsev, Vanhove]

The two-loop sunset graph

The pencil of sunset elliptic curve
$X_{p^{2}}\left(A_{2}\right)=\left\{\left(p^{2}, \underline{x}\right) \in \mathbb{P}^{2} \times X\left(A_{2}\right) \mid\left(m_{1}^{2} x_{1}+m_{2}^{2} x_{2}+m_{3}^{2} x_{3}\right)\left(x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}\right)=p^{2} x_{1} x_{2} x_{3}\right\}$
The j-invariant is

$$
j_{\ominus}\left(p^{2}, \underline{m}^{2}\right)=\frac{\left(\prod_{i=1}^{4}\left(p^{2}-\mu_{i}^{2}\right)+16 p^{2} \prod_{i=1}^{3} m_{i}^{2}\right)^{3}}{\left(p^{2}\right)^{2} \prod_{i=1}^{3} m_{i}^{4} \prod_{i=1}^{4}\left(p^{2}-\mu_{i}^{2}\right)}
$$

with $\mu_{i}^{2}=\left(\pm m_{1} \pm m_{2} \pm m_{3}\right)^{2}$

The two-loop sunset graph

The j-invariant is

$$
j_{\ominus}\left(p^{2}, \underline{m}^{2}\right)=\frac{\left(\prod_{i=1}^{4}\left(p^{2}-\mu_{i}^{2}\right)+16 p^{2} \prod_{i=1}^{3} m_{i}^{2}\right)^{3}}{\left(p^{2}\right)^{2} \prod_{i=1}^{3} m_{i}^{4} \prod_{i=1}^{4}\left(p^{2}-\mu_{i}^{2}\right)}
$$

The fibers types are

- Generic case $m_{1} \neq m_{2} \neq m_{3}$

$$
I_{2}(0)+I_{6}(\infty)+4 I_{1}\left(\mu_{i}^{2}\right) ; \quad \mu_{i}^{2}=\left(\pm m_{1} \pm m_{2} \pm m_{3}\right)^{2}
$$

- single mass $m_{1}=m_{2}=m_{3} \neq 0$: modular curve $X_{1}(6)$

$$
I_{2}(0)+I_{6}(\infty)+I_{3}\left(m^{2}\right)+I_{1}\left(9 m^{2}\right)
$$

The Feynman integral is an elliptic dilogarithm [Bloch, Kerr,Vanhove]

$$
H^{2}\left(\mathbb{P}^{2} \backslash\left\{x_{1} x_{2} x_{3}=0\right\}, \mathbb{X}_{\ominus}, \mathbb{Q}(2)\right)
$$

The 3-loop case : pencil of $K 3$

$x_{p^{2}}\left(A_{3}\right):=\left\{\left(p^{2}, \underline{x}\right) \in \mathbb{P}^{1} \times X\left(A_{3}\right) \left\lvert\,\left(m_{1}^{2} x_{1}+m_{2}^{2} x_{2}+m_{3}^{2} x_{3}+m_{4}^{2} x_{4}\right)\left(\frac{1}{x_{1}}+\cdots+\frac{1}{x_{4}}\right)=p^{2}\right.\right\}$
The graph hypersurface defines a $K 3$ hypersurface
By the iteration we know that this $K 3$ is elliptically fibered with for fibers given by the sunset elliptic curve

$x_{p^{2}}\left(A_{3}\right):=\left\{\left(p^{2}, \underline{x}\right) \in \mathbb{P}^{1} \times X\left(A_{3}\right) \left\lvert\,\left(m_{1}^{2} x_{1}+m_{2}^{2} x_{2}+m_{3}^{2} x_{3}+m_{4}^{2} x_{4}\right)\left(\frac{1}{x_{1}}+\cdots+\frac{1}{x_{4}}\right)=p^{2}\right.\right\}$
Generic anticanonical $K 3$ hypersurface in the toric threefold $X_{\Delta^{\circ}}$ has Picard rank 11
The physical locus for the sunset has at least Picard rank 16

masses	fibers	Mordell-Weil	Picard rank
$\left(m_{4}, m_{1}, m_{2}, m_{3}\right)$	$8 I_{1}+2 I_{2}+2 I_{6}$	2	16
$\left(m_{4}=m_{1}, m_{2}, m_{3}\right)$	$8 I_{1}+I_{4}+2 I_{6}$	2	17
$\left(m_{4}, m_{1}, m_{2}=m_{3}\right)$	$4 I_{1}+4 I_{2}+2 I_{6}$	1	17
$\left(m_{4}=m_{1}, m_{2}=m_{3}\right)$	$4 I_{1}+2 I_{2}+I_{4}+2 I_{6}$	1	18
$\left(m_{4}=m_{1}=m_{2}, m_{3}\right)$	$8 I_{1}+I_{4}+2 I_{6}$	3	18
$\left(m_{4}, m_{1}=m_{2}=m_{3}\right)$	$4 I_{1}+4 I_{2}+2 I_{6}$	2	18
$\left(m_{4}=m_{1}=m_{2}=m_{3}\right)$	$4 I_{1}+2 I_{2}+I_{4}+2 I_{6}$	2	19

\mid Pic $\mid=19$ motive of an elliptic 3-log $H^{3}\left(\mathbb{P}^{3} \backslash Д_{4}, \mathbb{X}_{4}, \mathbb{Q}(3)\right)$ [Bloch, Kerr, Vanhove]

The Picard-Fuchs operator

$L_{r}=\left(\alpha \frac{d}{d p^{2}}+\beta\right) \circ L_{r-1}$

The Picard-Fuchs operators for the
Feynman integral for general parameters

$$
m_{4} \neq m_{1} \neq m_{2} \neq m_{3}
$$

$$
L_{6}=\sum_{r=0}^{6} q_{r}(s)\left(\frac{d}{d p^{2}}\right)^{r}
$$

is order 6 and degree 25

$$
\begin{aligned}
& q_{6}\left(p^{2}\right)=\tilde{q}_{6}\left(p^{2}\right) \times \\
& \quad \prod_{\epsilon_{i}= \pm 1}\left(p^{2}-\left(\epsilon_{1} m_{1}+\epsilon_{2} m_{2}+\epsilon_{3} m_{3}+\epsilon_{4} m_{4}\right)^{2}\right)
\end{aligned}
$$

with $\tilde{q}_{6}\left(p^{2}\right)$ degree 17 with apparent singularities

The 4-loop case : pencil of CY 3-fold

$$
X_{p^{2}}\left(A_{4}\right):=\left\{\left(p^{2}, \underline{x}\right) \in \mathbb{P}^{1} \times X\left(A_{4}\right) \left\lvert\,\left(m_{1}^{2} x_{1}+\cdots+m_{5}^{2} x_{5}\right)\left(\frac{1}{x_{1}}+\cdots+\frac{1}{x_{5}}\right)=p^{2}\right.\right\}
$$

This gives a pencil of nodal Calabi-Yau 3-fold
For a (small or big) resolution \hat{W} is

- $h^{12}(\hat{W})=5$ for the 5 masses case : 30 nodes
- $h^{12}(\hat{W})=1$ for the 1 mass case $m_{1}=\cdots=m_{5}: 35$ nodes
- $h^{12}(\hat{W})=0$ for $p^{2}=m_{1}=\cdots=m_{5}=1$: rigid case birational to the Barth-Nieto quintic
- ${ }_{5}(1, \ldots, 1)=48 \zeta(2) L(f, 2)$ [Broadhurst]
- f weight 4 and level 6 modular form $f=(\eta(\tau) \eta(2 \tau) \eta(3 \tau) \eta(6 \tau))^{2}$
- This L-series is precisely the one for $H^{3}\left(X\left(A_{4}\right), Q_{\ell}\right)$ [Verill]
- Functional equation $L(f, s) \propto L(f, 4-s)$
- Again we have a manifestation of Deligne's conjecture

The 4-loop case : pencil of CY 3-fold

The Picard-Fuchs operators for the Feynman integral for general parameters

$$
\begin{aligned}
& m_{1} \neq \cdots \neq m_{5} \\
& \qquad L_{12}=\sum_{r=0}^{12} q_{r}(s)\left(\frac{d}{d p^{2}}\right)^{r}
\end{aligned}
$$

is order 12 and degree 121
The one identifies two masses the order of the differential operator decreases by 2

$$
\begin{gathered}
L_{12} \rightarrow L_{10} \rightarrow L_{8} \rightarrow L_{6} \rightarrow L_{4} \\
L_{r}=\left(\alpha\left(\frac{d}{d p^{2}}\right)^{2}+\beta \frac{d}{d p^{2}}+\gamma\right) \circ L_{r-2}
\end{gathered}
$$

Conclusion

We have put forward a new approach for deriving the differential equation for Feynman integrals
We have explained that the sunset graph have a natural nested Calabi-Yau structure allowing to understand they geometry easily Generic Feynman graphs is more intricate

For Feynman graph with $\operatorname{deg}(\mathcal{F})_{\Gamma}=L$ in \mathbb{P}^{n} with $n>L+1$ we do not have a Calabi-Yau

- Two-loop motivic elliptic curve for the Hodge structure [Bloch, Doran, Kerr, Vanhove (work in progress): : natural classification of the master integral topologies and algebraic geometry of del Pezzo surfaces

