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Truncated Moment Cone and Connections to the
Coalescence Manifold

Based on joint work with Cynthia Vinzant and Zvi Rosen.

We state our main question about moment cones of step functions.

We describe the classical Hausdor� truncated moment problem.

We give the minimal number of steps needed to generate the full

moment cone.

We establish a connection to a statistic arising in population genetics.

We compute the distance to the moment cone using semide�nite

programming.

We give the minimal number of steps needed to generate the moment

cones of monotone functions.
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Parametrized Step functions

Let f be a nonnegative step function of at most k steps:

f = y11[0,s1] +

k+1∑
i=2

yi1(si−1,si] ∈ Sk.

Sk denotes the set of nonnegative step functions of ≤ k steps on [0, 1].
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Figure: A step function in S2.
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Moment Vectors

Given A = {a1, a2, . . . , an} ⊂ Z≥0 and f : [0, 1]→ R,

m =

(∫ 1

0
xaf(x)dx

)
a∈A
∈ Rn

Mk(A) =

{(∫ 1

0
xaf(x)dx

)
a∈A

: f ∈ Sk
}
⊂ Rn

M(A) =
⋃
k∈N

Mk(A).

Mk(A) is invariant under nonnegative scaling,

Mk(A) ⊆M`(A) when k ≤ `,
Mk(A) +M`(A), de�ned as {m1 +m2 : m1 ∈Mk(A),m2 ∈M`(A)},
is a subset of Mk+`(A),

M(A) is convex.
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A Tale of Two Cones

Main Question: Given A = {a1, a2, . . . , an} ⊂ Z≥0, what is the smallest

k ∈ N such that the cone

Mk(A) =

{(∫ 1

0
xaf(x)dx

)
a∈A

: f ∈ Sk
}
⊂ Rn

is equal to the full moment cone

M(A) =
⋃
k∈N

Mk(A)?

Theorem (Rosen, S., Vinzant, 2020)

Mk(A) =M(A) ⇔ k ≥ |A| − 1.
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Moment Vectors of Step Functions

Let A = {0, 2, 5}, a single step function can

be parametrized as

f =
w

s
1[0,s] +

1− w
1− s

1(s,1].

w

s

1
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Figure: M1(A) and M2(A).
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The Hausdor� Truncated Moment Problem

Let A = {0, 1, . . . , d}, we denoteMd ⊂ Rd+1 the associated full moment

cone, also known as the Hausdor� truncated moment cone:

Md =

{(∫ 1

0
xjf(x)dx

)
j=0,...d

, f ∈ Sk for some k ∈ Z≥0

}
,

Hausdor� truncated moment problem: Given m ∈ Rd+1, does m
belong toMd?

1 Conical hull of the moment curve vd(x) = (1, x, . . . , xd) on [0, 1].

2 Dual to the cone of nonnegative polynomials on [0, 1] of degree ≤ d.
3 As a Spectrahedron.

Reference: Schmüdgen, The Moment Problem, Chapter 10.
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Semide�nite Representation of the Moment Cone

For any d ∈ Z+, the coneMd is a spectrahedron. It admits a semide�nite

representation using a pair of Hankel matrices.

If d = 2e is even, then

Md =

{
m ∈ Rd+1 :

(mi+j)0≤i,j≤e � 0

(mi+j+1 −mi+j+2)0≤i,j≤e−1 � 0

}
,

and if d = 2e+ 1 is odd, then

Md =

{
m ∈ Rd+1 :

(mi+j+1)0≤i,j≤e � 0
(mi+j −mi+j+1)0≤i,j≤e � 0

}
.

Example:

M3 =

{
(1,m1,m2,m3) ∈ R4 :

[
m1 m2

m2 m3

]
� 0,

[
1−m1 m1 −m2

m1 −m2 m2 −m3

]
� 0

}
.
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If d = 2e is even, then

Md =

{
m ∈ Rd+1 :

(mi+j)0≤i,j≤e � 0

(mi+j+1 −mi+j+2)0≤i,j≤e−1 � 0

}
,

and if d = 2e+ 1 is odd, then

Md =

{
m ∈ Rd+1 :

(mi+j+1)0≤i,j≤e � 0
(mi+j −mi+j+1)0≤i,j≤e � 0

}
.

Example:

M3 =

{
(1,m1,m2,m3) ∈ R4 :

[
m1 m2

m2 m3

]
� 0,

[
1−m1 m1 −m2

m1 −m2 m2 −m3

]
� 0

}
.
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Figure: A�ne slice of the conical hull of v3 : [0, 1]→ R4, for v3(t) = (1, t, t2, t3).

Example:

M3 =

{
(1,m1,m2,m3) ∈ R4 :

[
m1 m2

m2 m3

]
� 0,

[
1−m1 m1 −m2

m1 −m2 m2 −m3

]
� 0

}
.



Cones of Moments of Step Functions

Recall: Given A = {a1, a2, . . . , an} ⊂ Z≥0 and k ∈ N, we de�ne

Mk(A) =

{(∫ 1

0
xaf(x)dx

)
a∈A

: f ∈ Sk
}
⊂ Rn

M(A) =
⋃
k∈N

Mk(A) ⊂ Rn.

An analogous structure to Md:

M(A) is the conical hull of vA(t) = (ta)a∈A for t ∈ [0, 1].

M(A) is dual to the cone of polynomials supported on A, nonnegative
on [0, 1].

Main theorem: |A| − 1 steps required for Mk(A) to �ll-out M(A).

M(A) as a projected spectrahedron.
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Moments of Point Masses

Given A = {a1, a2, . . . , an} ⊂ Z≥0, the moment map vA is given by

vA : t 7→ (ta1 , . . . , tan) ∈ Rn.

For t ∈ (0, 1), and ε ∈ (0, 1− t) consider the point mass step function

f = ε−11(t,t+ε] ∈ S2.

By continuity of the integral, limε→0

∫ 1
0 x

af(x)dx = ta =
∫ 1
0 x

adδt(x).{
vA(t) ∈M2(A) t ∈ (0, 1)

vA(t) ∈M1(A) t ∈ {0, 1}

conicalHull {vA(t) : t ∈ [0, 1]} ⊆M(A).
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Nonnegative polynomials on M(A)

Given a linear functional ` ∈ Rn nonnegative on M(A), we de�ne

p(x) =
∑
a∈A

pax
a = `(vA(x)).

Let m ∈M(A) and µ be a nonnegative measure on [0, 1] generating m∫
p(x)dµ(x) = `(m).

If ` de�nes a supporting hyperplane of M(A) at m, meaning `(m) = 0,
then µ admits a representation supported on a subset of the roots of p(x)
in [0, 1].
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Projected Spectrahedra

M(A) is the image ofMmax(A) under the map πA : Rmax(A)+1 → RA.
Example: Let A = {0, 2, 5, 9}:

M(A) =
{
(m0,m2,m5,m9) : ∃m ∈ R10 s.t. H1(m) < 0, H2(m) < 0

}
where

H1 =


m1 m2 m3 m4 m5
m2 m3 m4 m5 m6
m3 m4 m5 m6 m7
m4 m5 m6 m7 m8
m5 m6 m7 m8 m9

 < 0

H2 =


m0 − m1 m1 − m2 m2 − m3 m3 − m4 m4 − m5
m1 − m2 m2 − m3 m3 − m4 m4 − m5 m5 − m6
m2 − m3 m3 − m4 m4 − m5 m5 − m6 m6 − m7
m3 − m4 m4 − m5 m5 − m6 m6 − m7 m7 − m8
m4 − m5 m5 − m6 m6 − m7 m7 − m8 m8 − m9

 < 0.
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Main Theorem

M(A) = conicalHull {vA(t) : t ∈ [0, 1]} ⊂ Rn

Caratheodory's Theorem: For any m ∈M(A), there exists

0 ≤ t1 ≤ . . . ≤ tn ≤ 1 and wj ≥ 0 such that

m =
n∑
j=1

wjvA(tj) where each vA(tj) ∈M2(A)

M(A) ⊆M2|A|(A).

Theorem (Rosen, S., Vinzant, 2020)

M(A) ⊆M|A|−1(A).
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Coalescence Manifold

p(t): the population size at time t before present.

The associated genealogical tree is viewed as a Poisson point process.

At time t, there is a 1/p(t) probability that two specimens picked at

random will have a parent in common.

For a random sample of size i drawn from the current population,

ci denotes the expected time to the �rst common ancestor.

The coalescence vector c = (c2, . . . , cn) ∈ Rn−1 is given by

ci(p) =

∫ ∞
0

(
i

2

)
t

p(t)
exp

[
−
(
i

2

)∫ t

0

1

p(x)
dx

]
dt.

Denote Cn,k the collection of coalescence vectors arising from step

functions of at most k steps.
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Connection to the Coalescence Manifold

Theorem (Rosen, Bhaskar, Roch, Song, 2018)

There exists a κn ≤ 2n− 1 such that for all k ≥ 2, we have

Cn,k ⊆ Cn,κn .

Theorem (Rosen, S., Vinzant, 2020)

The coalescence manifold Cn,k is the intersection of Mk(A) with the a�ne

hyperplane of points with coordinate sum equal to one for

A = {0, 2, 5, . . . ,
(
n
2

)
− 1}. That is,

Cn,k =

{
(ma)a∈A ∈Mk(A) :

∑
a∈A

ma = 1

}
.

Corollary: Cn,n−2 = Cn,k for all k ≥ n− 2 and Cn,n−3 ( Cn,n−2.
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Connection to the Coalescence Manifold

Let A = {0, 2, 5, 9}, in which case C5,k =Mk(A)

Figure: The sets M1(A), M2(A), M3(A) in {m0 = 1} for A = {0, 2, 5, 9}.
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Distance to the Coalescence Manifold

Given a point p = (a, b, c, d) ∈ R4, we can �nd the closest point in C5,3 by

solving the following semide�nite program

min
λ,m0,...,m9

λ such that m0 +m2 +m5 +m9 = 1,

H1(m) � 0, H2(m) � 0, and


λ m0 − a m2 − b m5 − c m9 − d

m0 − a 1 0 0 0
m2 − b 0 1 0 0
m5 − c 0 0 1 0
m9 − d 0 0 0 1

 � 0.
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Sketch of Proof of Main Theorem (1/2)

Let m be a point on the boundary of M(A)

Let ` : Rn → R de�ne a supporting hyperplane of M(A) at m:

`(m) = 0.

The polynomial p(x) = `(vA(x)) is nonnegative on [0, 1].

For any nonnegative measure µ with moment m∫
p(x)dµ = `(m) = 0

R = {x ∈ [0, 1] : p(x) = 0}
The support of µ is a subset of R

µ =
∑
r∈R

wrδr m =
∑
r∈R

wrvA(r) for some wr ∈ R≥0.
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Sketch of Proof of Main Theorem (2/2)

m =
∑

r∈R wrvA(r) for some wr ∈ R≥0

By Descartes' rule of signs, p has at most |A| − 1 roots in [0, 1],
counting multiplicity

Since each of the interior root has multiplicity ≥ 2, we get

m ∈M|A|−1(A)

Let c be the moment of the constant function 1

c =

(
1

a+ 1

)
a∈A
∈M0(A)

Given any m ∈M(A), there exists a λ ≥ 0 such that m− λc is on

the boundary of M(A). If m−λc belongs to Mk(A), then so does m.
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Increasing and Decreasing Step Functions

Given A = {a1, a2, . . . , an} ⊂ Z≥0

M↑(A) =

{(∫ 1

0
xaf(x)dx

)
a∈A

: f ≥ 0 is increasing on [0, 1]

}
M↓(A) =

{(∫ 1

0
xaf(x)dx

)
a∈A

: f ≥ 0 is decreasing on [0, 1]

}
.

Theorem (Rosen, S., Vinzant, '20)

Every A-moment vector of a monotone density function is the limit of

A-moments of monotone step functions with ≤ k breakpoints if and only if

k ≥ bn/2c.
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Towards Open Questions

A moment vector m in the interior of M(A) can be attained with multiple

step functions.

Figure: C4 =M({0, 2, 5}) and �bers of select points, as subsets of the

(s1, s2)-simplex.
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Figure: Images of 3-dimensional faces of C5,2.
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Figure: Image of step functions of a single step and a point mass at 1.
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