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Finding one root: a purely numerical question

Bézout bound vs. input size
n polynomial equations
n variables, degree D

degree input size #roots

D n
(D+n

n

)
Dn

2 ∼ 1
2 n3 2n

n ∼ 1p
π

n
1
2 4n nn

D ≫ n ∼ 1
(n−1)! D

n Dn

#roots≫ input size
To compute a single root, do we have to pay for #roots?

Exact computation
Having one root is having them all (generically).

Numerical computation
Onemay approximate one root disregarding the others.

Polynomial complexity?
Maybe, but only with numerical methods.
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Smale 17th problem

“Can a zero of n complex polynomial equations in n unknowns be found
approximately, on the average, in polynomial time with a uniform algorithm?”

— S. Smale, 1998

approximate root A point fromwhich Newton’s iteration converges quadratically.

polynomial time with respect to the input size.

on the average with respect to some input distribution.

uniform algorithm A Blum–Shub–Smale machine (a.k.a. real random access machine):

• registers store exact real numbers,
• unit cost arithmetic operations,
• branching on positivity testing.

Infinite precision?! Yes, but we still have to deal with stability issues.
The model is very relevant for this problem.
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Another brick in the wall

Problem solved!
Shub, Smale (1990s) Quantitative theory of Newton’s iteration

Complexity of numerical continuation

Beltrán, Pardo (2009) Randomization

Bürgisser, Cucker (2011) Deterministic polynomial average time when D ≪ n or D ≫ n

Smoothed analysis

Lairez (2017) Derandomization
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Numerical continuation



Newton's iteration

z

F (z)

−dz F−1

output

F : Cn →Cn a polynomial map,

zk+1 = zk −dzk F−1 ·F (zk ).

• Convergerges quadratically fast close to a
regular root.

• May diverge on a open set of initial point.
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The geometry of the basins of attraction is complex...

Convergence of Newton’s iteration for
the polynomial z3 −2z +2.
In red, the points fromwhich
Newton’s iteration do not converge.

(Picture by Henning Makholm.)
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... but we can give sufficient conditions Smale (1986)

F : Cn →Cn , a polynomial map.

γ(F, x)≜ sup
k>1

∥∥∥ 1
k ! dx F−1 ·dk

x F
∥∥∥ 1

k−1
.

γ-Theorem

If F (ζ) = 0 and ∥z −ζ∥γ(F,ζ) É 3−p7
2 then∥∥∥Newton(k)(z)−ζ

∥∥∥É 21−2k
.
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Numerical continuation

z

Ft (z) δt

t

−dz F †
t

output

Ft : Cn →Cn a polynomial system depending
continuously on t ∈ [0,1]; z0 a root of F0.

zk+1 = zk −dzk F †
tk
·Ftk (zk )

tk+1 = tk +δtk

• Solves any generic system

• How to set the step size δt ?

• How to choose the start system F0?

• How to choose a path?

• Howmany steps do we need to go
from F0 to F1?
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Condition number of a root a corner stone

H the space of homogeneous polynomial systems of n equations of degree D in
n +1 variables, embedded with some Hermitian norm that is invariant under
unitary change of variables.

F a polynomial system inH

z a root of F in Pn

µ(F, z) = sup
dP(z, z ′)
∥F ′−F∥ with F ′ ∼ F and F ′(z ′) = 0

=
∥∥∥(dz F )†

∥∥∥= 1

least singular value of dz F

≃ sup
1

∥F −F ′∥ where z is a singular root of F ′

Ê 2D− 3
2 γproj(F, z).
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Complexity of numerical computation Choosing the step size

Ft = 0

ζ z

Ft+δt = 0

ζ′ z ′

Newton’s iteration

We have d(ζ,ζ′)≲µ(Ft ,ζ)∥Ḟt∥δt .

We need d(z,ζ′)≲ 1

D
3
2 µ(Ft+δt ,ζ′)

.

It suffices that δt ≲ 1

D
3
2 µ(Ft ,ζ)2

.

Theorem (Shub 2009)
One can compute an approximate root of F1 given an approximate root of F0 with

#stepsÉ 136D
3
2

∫ 1

0
µ(Ft ,ζt )2∥Ḟt∥dt .
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How to choose the path?

linear interpolation Ft = tF1 + (1− t )F0

a better path? We can imagine the notion of adaptative path, but it is difficult to
make it works.

F0 F1
singular system

better path
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How to choose the start system? Deterministic start systems

difficulty It is not enough to control the conditioning of the start system, we need a grasp
on what happen along the continuation path.

A
{

xi = 0, 1 É i É n (homogeneized in degree D)
with its root (0, . . . ,0).
Works well when D ≫ n (Armentano, Beltrán, Bürgisser, Cucker, Shub 2016).

B
{

xD
i = 1, 1 É i É n

with its Dn roots.
Works well when D ≪ n (Bürgisser, Cucker 2011).

C F (x1, . . . , xn)−F (0, . . . ,0) = 0

with its root (0, . . . ,0).
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Randomization of the start system



A randomized start system

Conditioning of a random system

• F ∈H , random polynomial system, uniformly distributed inS(H ).

• ζ a random root of F = 0, uniformly chosen among the Dn roots.

Theorem (Beltrán, Pardo 2011; Bürgisser, Cucker 2011)

E(µ(F,ζ)2) É n ·dimH︸ ︷︷ ︸
the input size

• How to sample (F,ζ)? Chicken-and-egg problem?
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Complexity of numerical continuation with random endpoints

F0, F1 random polynomial systems of norm 1, uniformly distributed.
ζ0 a random root of F0, uniformly distributed.

Ft linear interpolation (normalized to have norm 1).
ζt continuation of ζ0.

lemma ∀t , Ft is uniformly distributed and ζt is uniformly distributed among its roots.

#stepsÉ 136D
3
2 dS(F0,F1)

∫ 1

0
µ(Ft ,ζt )2dt (Shub 2009)

E[#steps] É 136πD
3
2 E

[∫ 1

0
µ(Ft ,ζt )2dt

]
É 136πD

3
2

∫ 1

0
E
[
µ(Ft ,ζt )2]dt (Tonelli’s theorem)

=O
(
nD

3
2 (input size)

)
(Beltrán, Pardo 2011; Bürgisser, Cucker 2011)
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How to sample uniformly a random system and a root? Beltrán, Pardo (2009)

first try Sample ζ ∈Pn uniformly,
sample F uniformly in {F s.t. F (ζ) = 0 and ∥F∥ = 1}.

 F is not uniformly distributed.

BPmethod Sample a linear system L uniformly,
compute its unique root ζ ∈Pn ,
sample F uniformly in

{
F s.t. F (ζ) = 0, dζF = L and ∥F∥ = 1

}
.

 F and ζ are uniformly distributed.

Solves Smale’s problemwith randomization.
Total average complexityO

(
nD

3
2 (input size)2

)
.
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Smoothed analysis Bürgisser, Cucker (2011)

average analysis gives little information on the complexity of solving one given system.

worst-case analysis is irrelevant here (unbounded close to a systemwith a singular root).

smoothed analysis bridges the gap and gives information on a single system F pertubed by
a Gaussian noise ε of varianceσ2. This models an input data that is
only approximate.

sup
system F

E
[
cost of computing one root of F +ε

]=O (σ−1nD
3
2 N 2).

average-case w.r.t. the noise
worst-case
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Derandomization



Truncation and noise extraction duplication of random variables

x, a random uniformly distributed variable in [0,1].

x = 0.6044025624180895161178081249104686505290197465315910133226678885000016210273264056886697260290934736

0.6044025624180895161178081249104686

truncation

0.505290197465315910133226678885000016210273264056886697260290934736

noise extraction

• The truncation is a random variable that is close to x.

• The noise is an independent from x and uniformly distributed in [0,1].

17



Truncation and noise extraction on an odd-dimensional sphere

S(H ) ≃S2n−1

mesh onS2n−1 (truncation)

[0,1]2n−1 S2n−1 (noise)
S

• S is a measure preserving map due to Sibuya (1962).

• The noise is nearly uniformly distributed and nearly independent from the truncation.
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Derandomization

Beltràn and Pardo’s randomization

approximate root

numerical continuation

start system target system

BP randomization

randomness

Lairez’s derandomization

approximate root?

numerical continuation

start system approx. target sys.

BP randomization

noise target system

truncation

noise ext.

No?

increase truncation order

Solves Smale’s problemwith a deterministic algorithm.
Randomness is in Smale’s question from its very formulation asking for an average analysis.
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Beyond Smale's problem



Complexity of numerical algorithms

theory
gap

applications and observations

structured system Can we have interesting complexity bounds, supported by
probabilistic analysis, for structured systems, especially sparse
systems and low evaluation complexity systems?

singular roots Can we design algorithms that find singular roots within nice
complexity bounds?

better complexity In the setting of Smale’s question, can we reach a quasi-optimal
(input size)1+o(1) average complexity?
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Complexity exponent in Smale's problem

total cost=O
(

(input size)︸ ︷︷ ︸
cost of Newton’s iteration

·#steps).

Beltrán, Pardo (2009) E(#steps) = (input size)1+o(1)

Armentano, Beltrán, Bürgisser, Cucker, Shub (2016)
E(#steps) = (input size)

1
2+o(1)

work in progress E(#steps) = poly(n,D) = (input size)o(1)
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Short paths in the condition metric Beltrán, Shub (2009)

question Given polynomial systems F0 and F1 and a root ζ of F0, how large is

inf
path F0 → F1

∫ 1

0
µ(Ft ,ζt )

√
∥Ḟt∥2 +∥ζ̇t∥2dt?

(This upper bounds theminimal number of continuation steps required to
go from F0 to F1.)

answer Not much!

#steps=O
(
nD

3
2 +n

1
2 log

(
µ(F0,ζ0)µ(F1,ζ1)

))
⇝ E(#steps) =O

(
nD3 log(input size)

)
with F0 and F1 random

but... The construction is not algorithmically useful (one need to know a root of
the target system to construct the path).
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Bigger steps with unitary paths

observation InH , relatively small pertubation of a typical system F changes everything.
Makes it difficult to make bigger steps.

idea Perform the continuation is a lower dimensional parameter space:
We allow only rigid motions of the equations rather than arbitrary
deformations.

compute one solution
of each equation

move the hypersurfaces
to make the solution match

continuously return
to the original position
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Unitary paths

More formally...

parameter space U (n +1)×·· ·×U (n +1), that is n copy of the unitary group.
This has dimension∼ n3, compare with n · (D+n

n

)
.

paths Geodesics in the parameter space.

randomization Same principle as Beltràn and Pardo’s randomization.

complexity E(#steps) = poly(n,D).
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Gràcies!

Merci !

¡Gracias!

Thank you!

Danke!

Present slides are online at pierre.lairez.frwith bibliographic references.
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