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definition A basic semialgebraic set is the solution set of finitely many

polynomial equation and inequations.

-Ko

rg/wiki/Steinmetz

Picture: https://de.wikipedia.o


https://de.wikipedia.org/wiki/Steinmetz-Körper

Semialgebraic sets in applications

motion planning

J. T. Schwartz, M. Sharir, “On the piano movers problem”
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FI1G. 1. An instance of our case of the “piano movers” problem. The positions drawn in full

are the initial and final positions of B; the intermediate dotted positions describe a possible
motion of B between the initial and final positions.
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Complexity bounds in real algebraic geometry symbolic algorithms

W < R" (basic) semialgebraic set defined by s equations or inequalities of degree D.

polynomial time algorithm

membership Decideif xe W

single exponential time algorithm — (sD)"""

emptyness Decide if W = & (Grigoriev, Vorobjov, Renegar)
dimension Compute dim W (Koiran)
#CC Compute the number of connected components (Canny,
Grigoriev, Vorobjov)
bg, b1, by, ... Compute the first few Betti numbers (Basu)
Euler Compute the Euler characteristic (Basu)

double exponential algorithms — (sD)ZO(")
homology Compute the homology groups of W
CAD Compute the cylindrical algebraic decompositon (Collins)
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« Homotopically equivalent to its nerve
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Approaching sets by union of balls numerical algorithms

« Homotopically equivalent to its nerve

« Combinatorial computation of the homology

wﬁmt@%.. . .
ﬁ;r‘” ™Y « Tricky choice of the parameters:
5 g
!f ‘3% « sufficiently many points
& ! . « radius not too small
*\% 4 (g « radius not too large
36\ ¥ | » How to quantify “sufficiently many”, “too small”
- e ﬁﬁ@ and “too large” in an algebraic setting?

+ Can we derive algebraic complexity bounds for the
computation of the homology of semialgebraic
sets?
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A numerical algorithm for homology arxiv:1706.07473

input W={xeR"| fi(x)=-+= fy(x)=0,81(x) =0,..., gs(x) = 0}

input space /= tuples of s+ g polynomial equations/inequalities
of degree at most D.

input size N = dimension of this space.
condition number x, (to be defined later)

main result One can compute H, (W) with (sDK*)”mm operations

probability measure Gaussian probability distribution

3+o(1)

probabilistic analysis cost < (sD)” with probabiliy =1 - (sD)™"
cost < 200V%) with probabiliy =1 -2V,

grid methods Initiated by Cucker, Krick, Malajovich, Shub, Smale, Wschebor
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many analogues [e.g. Demmel]

Is there a considition number for closed sets?



Reach of a closed set
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The reach of a set is its minimal distance to its medial axis.

https://en.wikipedia.org/wiki/Local_feature_size
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Reach of a closed set

W a closed subset of R"

thereach 7(W) is the largest real number such that
dx, W)<t(W)=>3yeW:dx,W)=I|x-yl.
(Federer)

T(W) =00 oco>T1(W)>0 T(W)=0
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Non-transversal intersection of the boundaries

o0 00 0@

Singularity in the boundary
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An algebraic condition number real spherical varieties

homogeneous setting X c S” defined by homogeneous polynomial equations
f1=0,..., f3 =0 (denoted F = 0) of degree at most D.

singular solution x € X is a singular solution if the jacobian matrix (dfi/dxj)iyj is

not full-rank.
ill-posed problems The system F = 0 is ill-posed if it has a singular solution.

condition number «(F) = || F||/dist (F,{ill-posed problems}).
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Geometry of ill-posedness dimension, degree

What is the geometry of {ill-posed problem} c #?
codimension 1
degree < n2"D"

example A cubic plane curve:
g X3+ a1 x*+ a, xy* + a3y} + as X’ + asxy+ag y* + a; x+agy+ag = 0.
dim ./ =9 and the ill-posed set is given by the following degree 12

polynomial with 2040 monomials
—19683ay az ag+26244dy a; as agas —5832 ay a; ay as—5832ay a; ag ag—7290ay a3 a; a; a; +3¢
—1836613613agaga9+216aga3a§a2—432agaga§+216agaga§a9—27agaga§+26244aga1a2a§
+3888aya o a3 +4860a; 5 a5 ag—2592ay §a9+288ay g—12
012 a3ag a9+ apayazazagdgdy agpa azazdgdg dg+ apayazazag
—8748aga1a§a5a8ag—8748a8a1a§a6a7ag+5832aga1aga7a§ag+5832a8a1a§a5a§a8+486
+4860a3a1a§a§a7a8ag—5184a8a1a§a6a7a2a9+864a(3)a1a§a7a§—5184a3a1a3a5agagag+

+ 1836@3 ayas ag ay ag dy —360ag ayas aé ay a§+864a8 a as ag ag —360@3 a as ag aé dy +36a87al



Distance to ill-posedness

theorem dist (F, {ill-posed}) = m1 +IFx)?

1
Id.FT|12

vanisihes at a singular root

(Cucker)
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Distance to ill-posedness

1

theorem dist(F, {ill-posed}) ~ min | ——— + || F(x)
(F, {illposed) = min | - + P

~
vanisihes at a singular root

(Cucker)

~+ K (F) is easily approximable.
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An algebraic condition number spherical semialgebraic sets

homogeneous setting W < S" defined by homogeneous polynomial equations F =0
and inequalities G = 0 of degree at most D.

affine — spherical Homogenize and constrain xg > 0.
ill-posed problems W isill-posed some subsystem FuU H, with H < G, is ill-posed.
condition number «x.(F,G) =max;cgk(FUL).

theorem « . (F,G) < ||F, G|/ dist ((F, G),{ill-posed problems}).
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Reach and condition number

homogeneous setting W < S’ defined by homogeneous polynomial equations F =0
and inequalities G = 0 of degree at most D.

theorem | D27(W)k.(EG) > 1

corollary & < S finite.
. -1
Forany d € 3distHausdorﬁ(%,W),(14D§1<*(F,G)) )

U Bs(x) = w.
XeEX
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Tentative algorithm

input W ={xeS"|F(x)=0,G(x) =0}

: -1
1 Computed = (14D%K*(E G))
2 Picka %6-grid % onS”".

(That s, any point of S” is %6-close to¥9.)
3 Compute & = {x € ¥ | dist(x, W) < 16}

output The homology of Bs(%).

correctness Niyogi-Smale-Weinberger theorem + x . estimate of 7(W).

efficiency How to check dist(x, W) < %5?
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Easier sampling

input W ={xeS"|F(x)=0,G(x) =0}k, =k+(FG)
thickening W(r)={xeS" ||f0I<rlfil,gjx) =-rlg;l} 2W.
theorem Ifr < (13D%K2) then

Tube (W, D2 cwr) e Tube(W, 3k 1)

interesting!

remark W(r)Z0=>W#J

remark «x. bounds the variations of W under small pertubations of the

equations: it is a genuine condition number

idea Replace dist(x, W) < %5 by x € W (r) (for a suitable r).

17



Covering algorithm

input A spherical semialgebraic set W = {x€ $" | F(x) =0, G(x) = 0}
assumption « . (F,G) is finite.
output Afiniteset Z < S" and an € >0 suchthat B,(%¥) = W.

algorithm  function CoveERING(F, G)
r—1
repeat
r—r/2
Compute a r-grid 4, in S”
ki —max{x(FUL,x)| x€%, and L < G}
until 71 D3 k2r < 1
returntheset X =%, N W(D% r) and the real number e =5Dk..r
end function

18
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Condition-based analysis

computation of the covering (sDK*)”Mm
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Condition-based analysis

computation of the covering (sDx )" "

n2+0(1)

computation of the homology #% °"™ = (sDx,)

How bigis x.?
worst case complexity unbounded

average complexity unbounded ?!
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Weak complexity bounds

If the average case is unbounded, is the algorithm slow?
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If the average case is unbounded, is the algorithm slow?

example The power method for computing the dominant eigenpair of a
real d x d symmetric matrix (compute M" x for large n).

Unbounded average case (Kostlan).
Used in practice with success.
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Weak complexity bounds

If the average case is unbounded, is the algorithm slow?
example The power method for computing the dominant eigenpair of a

real d x d symmetric matrix (compute M" x for large n).

Unbounded average case (Kostlan).

Used in practice with success.

weak complexity cost < poly(d) with probability = 1 —exp(—d).
(Amelunxen, Lotz)
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Probabilistic analysis

general bound If £ c ./ is an homogeneous algebraic hypersurface, and
if X € A is a Gaussian isotropic random variable,

( X ) 11dim #degX
—_— | s—.
dist(X, ) t
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degree bound deg{ill-posed problems } < n2"(s+1)"*1 D"
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Probabilistic analysis

general bound If £ c ./ is an homogeneous algebraic hypersurface, and
if X € A is a Gaussian isotropic random variable,

( X ) 11dim #degX
—— =2 S — .
dist(X, ) t

degree bound deg{ill-posed problems } < n2"(s+1)""1 D"

corollary 1 cost < (sD)"""" with probabiliy =1— (sD)™"
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Probabilistic analysis

general bound

degree bound
corollary 1

corollary 2

If ¥ c A is an homogeneous algebraic hypersurface, and
if X € A is a Gaussian isotropic random variable,

( X ) 11dim #degX
—_— s —=
dist(X, ) t

deg{ill-posed problems} < n2"(s+ nH**ipn
cost< (sD)™"""" with probabiliy =1— (sD)™"

cost < 200V with probabiliy =1 -2,
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Ill-posedness is relative to a data representation
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Ill-posedness is relative to a data representation

example Given by a rational parametrization, the lemniscate is
well-conditionned

22



Ill-posedness is relative to a data representation

example Given by a rational parametrization, the lemniscate is
well-conditionned

next goal Given F = (fi,..., [s), compute the homology of any set obtain
from the sets { f; = 0} and {f; < 0} by union, intersection and
complementation, assuming k. (F) < co.
Work in progress by Josué Tonelli Cueto.
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Ill-posedness is relative to a data representation

example Given by a rational parametrization, the lemniscate is
well-conditionned

next goal Given F = (fi,..., f5), compute the homology of any set obtain
from the sets {f; = 0} and {f; < 0} by union, intersection and
complementation, assuming k. (F) < co.
Work in progress by Josué Tonelli Cueto.

Thank you!
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