Numerical computation of the homology of basic semialgebraic sets

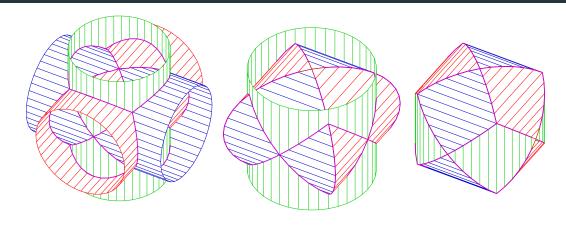
Pierre Lairez

Inria Saclay

TAGS 2018

Linking Topology to Algebraic Geometry and Statistics 22 February 2018, Leipzig joint work with Peter Bürgisser and Felipe Cucker

Basic semialgebraic sets



definition A *basic semi algebraic set* is the solution set of finitely many polynomial equation and inequations.

 ${\tt Picture:https://de.wikipedia.org/wiki/Steinmetz-K\"{o}rper}$

J. T. Schwartz, M. Sharir, "On the *piano movers* problem"

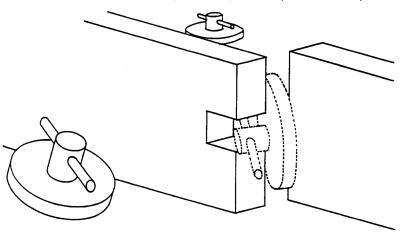


FIG. 1. An instance of our case of the "piano movers" problem. The positions drawn in full are the initial and final positions of B; the intermediate dotted positions describe a possible motion of B between the initial and final positions.

 $symbolic\ algorithms$

 $W \subseteq \mathbb{R}^n$ (basic) semialgebraic set defined by s equations or inequalities of degree D.

polynomial time algorithm

 $W \subseteq \mathbb{R}^n$ (basic) semialgebraic set defined by s equations or inequalities of degree D.

polynomial time algorithm

membership Decide if $x \in W$

 $W \subseteq \mathbb{R}^n$ (basic) semialgebraic set defined by s equations or inequalities of degree D.

 $W \subseteq \mathbb{R}^n$ (basic) semialgebraic set defined by s equations or inequalities of degree D.

polynomial time algorithm

membership Decide if $x \in W$

single exponential time algorithm $-(sD)^{n^{O(1)}}$

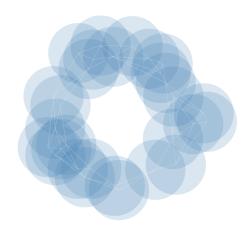
emptyness Decide if $W = \emptyset$ (Grigoriev, Vorobjov, Renegar)

```
polynomial time algorithm
               membership Decide if x \in W
single exponential time algorithm -(sD)^{n^{O(1)}}
                 emptyness Decide if W = \emptyset (Grigoriev, Vorobjov, Renegar)
                 dimension Compute dim W (Koiran)
                        #CC Compute the number of connected components (Canny,
                             Grigoriev, Vorobjov)
               b_0, b_1, b_2, \dots Compute the first few Betti numbers (Basu)
                      Euler Compute the Euler characteristic (Basu)
```

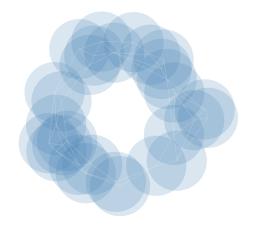
```
polynomial time algorithm
               membership Decide if x \in W
single exponential time algorithm -(sD)^{n^{O(1)}}
                 emptyness Decide if W = \emptyset (Grigoriev, Vorobjov, Renegar)
                 dimension Compute dim W (Koiran)
                        #CC Compute the number of connected components (Canny,
                             Grigoriev, Vorobjov)
               b_0, b_1, b_2, \dots Compute the first few Betti numbers (Basu)
                       Euler Compute the Euler characteristic (Basu)
double exponential algorithms -(sD)^{2^{O(n)}}
```

```
polynomial time algorithm
               membership Decide if x \in W
single exponential time algorithm -(sD)^{n^{O(1)}}
                 emptyness Decide if W = \emptyset (Grigoriev, Vorobjov, Renegar)
                 dimension Compute dim W (Koiran)
                        #CC Compute the number of connected components (Canny,
                             Grigoriev, Vorobjov)
               b_0, b_1, b_2, \dots Compute the first few Betti numbers (Basu)
                      Euler Compute the Euler characteristic (Basu)
double exponential algorithms -(sD)^{2^{O(n)}}
                 homology Compute the homology groups of W
```

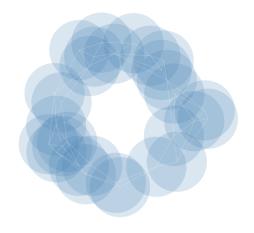
```
polynomial time algorithm
               membership Decide if x \in W
single exponential time algorithm -(sD)^{n^{O(1)}}
                 emptyness Decide if W = \emptyset (Grigoriev, Vorobjov, Renegar)
                 dimension Compute dim W (Koiran)
                        #CC Compute the number of connected components (Canny,
                             Grigoriev, Vorobjov)
               b_0, b_1, b_2, \dots Compute the first few Betti numbers (Basu)
                      Euler Compute the Euler characteristic (Basu)
double exponential algorithms -(sD)^{2^{O(n)}}
                 homology Compute the homology groups of W
                       CAD Compute the cylindrical algebraic decompositon (Collins)
```



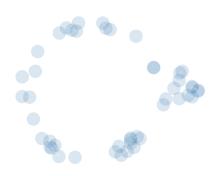
• Homotopically equivalent to its nerve



- Homotopically equivalent to its nerve
- Combinatorial computation of the homology



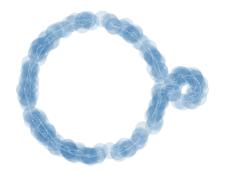
- Homotopically equivalent to its nerve
- Combinatorial computation of the homology
- Tricky choice of the parameters:



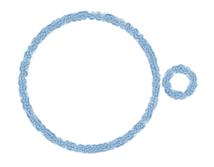
- Homotopically equivalent to its nerve
- Combinatorial computation of the homology
- Tricky choice of the parameters:
 - sufficiently many points



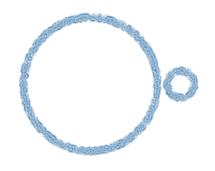
- Homotopically equivalent to its nerve
- Combinatorial computation of the homology
- Tricky choice of the parameters:
 - sufficiently many points
 - · radius not too small



- Homotopically equivalent to its nerve
- Combinatorial computation of the homology
- Tricky choice of the parameters:
 - sufficiently many points
 - · radius not too small
 - radius not too large



- Homotopically equivalent to its *nerve*
- Combinatorial computation of the homology
- Tricky choice of the parameters:
 - sufficiently many points
 - · radius not too small
 - radius not too large
- How to quantify "sufficiently many", "too small" and "too large" in an algebraic setting?



- Homotopically equivalent to its nerve
- Combinatorial computation of the homology
- Tricky choice of the parameters:
 - · sufficiently many points
 - · radius not too small
 - radius not too large
- How to quantify "sufficiently many", "too small" and "too large" in an algebraic setting?
- Can we derive algebraic complexity bounds for the computation of the homology of semialgebraic sets?

input
$$W = \{x \in \mathbb{R}^n \mid f_1(x) = \dots = f_q(x) = 0, g_1(x) \ge 0, \dots, g_s(x) \ge 0\}$$

input
$$W = \{x \in \mathbb{R}^n \mid f_1(x) = \dots = f_q(x) = 0, g_1(x) \ge 0, \dots, g_s(x) \ge 0\}$$

input space $\mathscr{H} = \text{tuples of } s + q \text{ polynomial equations/inequalities}$
of degree at most D .

$$\label{eq:weights} \begin{split} & \text{input} \ \ W = \big\{ x \in \mathbb{R}^n \ \big| \ f_1(x) = \dots = f_q(x) = 0, g_1(x) \geqslant 0, \dots, g_s(x) \geqslant 0 \big\} \\ & \text{input space} \ \ \mathscr{H} = \text{tuples of } s + q \text{ polynomial equations/inequalities} \\ & \text{of degree at most } D. \end{split}$$

input size N = dimension of this space.

input
$$W = \left\{ x \in \mathbb{R}^n \mid f_1(x) = \dots = f_q(x) = 0, g_1(x) \geqslant 0, \dots, g_s(x) \geqslant 0 \right\}$$
 input space $\mathscr{H} = \text{tuples of } s + q \text{ polynomial equations/inequalities}$ of degree at most D .

input size N = dimension of this space.

condition number κ_* (to be defined later)

$$\begin{aligned} & \text{input} \ \ W = \big\{ x \in \mathbb{R}^n \ \big| \ f_1(x) = \dots = f_q(x) = 0, g_1(x) \geqslant 0, \dots, g_s(x) \geqslant 0 \big\} \\ & \text{input space} \ \ \mathscr{H} = \text{tuples of } s + q \text{ polynomial equations/inequalities} \\ & \text{of degree at most } D. \\ & \text{input size} \ \ N = \text{dimension of this space}. \\ & \text{condition number} \ \ \kappa_* \ \text{(to be defined later)} \end{aligned}$$

main result One can compute $H_*(W)$ with $(sD\kappa_*)^{n^{2+o(1)}}$ operations

$$\label{eq:weights} \begin{array}{ll} \text{input} \ \ W = \big\{ x \in \mathbb{R}^n \ \big| \ f_1(x) = \dots = f_q(x) = 0, g_1(x) \geqslant 0, \dots, g_s(x) \geqslant 0 \big\} \\ \\ \text{input space} \ \ \mathcal{H} = \text{tuples of } s + q \text{ polynomial equations/inequalities} \\ \\ \text{of degree at most } D. \\ \\ \text{input size} \ \ N = \text{dimension of this space}. \end{array}$$

condition number κ_* (to be defined later)

main result One can compute $H_*(W)$ with $(sD\kappa_*)^{n^{2+o(1)}}$ operations

probability measure Gaussian probability distribution

```
\begin{aligned} & \text{input} \ \ W = \left\{x \in \mathbb{R}^n \ \middle| \ f_1(x) = \dots = f_q(x) = 0, g_1(x) \geqslant 0, \dots, g_s(x) \geqslant 0\right\} \\ & \text{input space} \ \ \mathscr{H} = \text{tuples of } s+q \text{ polynomial equations/inequalities} \\ & \text{of degree at most } D. \\ & \text{input size} \ \ N = \text{dimension of this space}. \\ & \text{condition number} \ \ \kappa_* \text{ (to be defined later)} \\ & \text{main result} \ \ \text{One can compute } H_*(W) \text{ with } (sD\kappa_*)^{n^{2+o(1)}} \text{ operations} \\ & \text{probability measure} \ \ \text{Gaussian probability distribution} \end{aligned}
```

 $cost \le 2^{O(N^2)}$ with probability $\ge 1 - 2^{-N}$.

probabilistic analysis $cost \le (sD)^{n^{3+o(1)}}$ with probability $\ge 1 - (sD)^{-n}$

$$\label{eq:weights} \begin{array}{ll} \text{input} \;\; W = \big\{ x \in \mathbb{R}^n \; \big| \; f_1(x) = \cdots = f_q(x) = 0, g_1(x) \geqslant 0, \ldots, g_s(x) \geqslant 0 \big\} \\ \\ \text{input space} \;\; \mathscr{H} = \text{tuples of } s + q \text{ polynomial equations/inequalities} \\ \\ \text{of degree at most } D. \end{array}$$

input size N = dimension of this space.

condition number κ_* (to be defined later)

main result One can compute $H_*(W)$ with $(sD\kappa_*)^{n^{2+o(1)}}$ operations

grid methods Initiated by Cucker, Krick, Malajovich, Shub, Smale, Wschebor

Condition number

Condition number for linear systems

problem How much the solution of a linear system Ax = b is affected by a pertubation of b?

Condition number for linear systems

problem How much the solution of a linear system Ax = b is affected by a pertubation of b?

$$\|\delta x\|/\|\delta b\| \leq \kappa(A) = \|A\|\|A^{-1}\|$$

(Goldstine, von Neuman, Turing)

Condition number for linear systems

```
problem How much the solution of a linear system Ax = b is affected by a pertubation of b? \|\delta x\|/\|\delta b\| \le \kappa(A) = \|A\| \|A^{-1}\| (Goldstine, von Neuman, Turing)
```

```
distance to ill-posed set \kappa(A) = \|A\|/\operatorname{dist}(A, \operatorname{singular matrices}) (Eckart, Young, Mirsky)
```

Condition number for linear systems

```
problem How much the solution of a linear system Ax = b is affected by a pertubation of b? \|\delta x\|/\|\delta b\| \le \kappa(A) = \|A\| \|A^{-1}\| (Goldstine, von Neuman, Turing)
```

```
distance to ill-posed set \kappa(A) = \|A\|/\operatorname{dist}(A, \operatorname{singular matrices}) (Eckart, Young, Mirsky)

many analogues [e.g. Demmel]
```

Condition number for linear systems

problem How much the solution of a linear system Ax = b is affected by a pertubation of b? $\|\delta x\|/\|\delta b\| \le \kappa(A) = \|A\| \|A^{-1}\|$

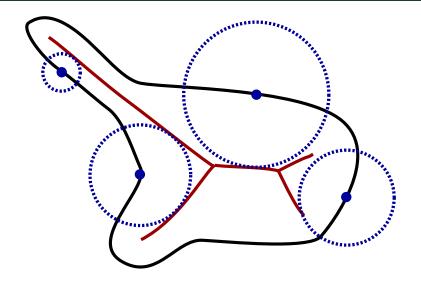
(Goldstine, von Neuman, Turing)

distance to ill-posed set $\kappa(A) = ||A|| / \operatorname{dist}(A, \operatorname{singular matrices})$

(Eckart, Young, Mirsky)

many analogues [e.g. Demmel]

Is there a considition number for closed sets?



The reach of a set is its minimal distance to its medial axis.

https://en.wikipedia.org/wiki/Local_feature_size

W a closed subset of \mathbb{R}^n

W a closed subset of \mathbb{R}^n

the reach
$$\tau(W)$$
 is the largest real number such that
$$d(x,W)<\tau(W)\Rightarrow \exists !y\in W: d(x,W)=\|x-y\|.$$
 (Federer)

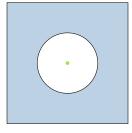
W a closed subset of \mathbb{R}^n

the reach
$$\tau(W)$$
 is the largest real number such that
$$d(x,W)<\tau(W)\Rightarrow \exists !y\in W: d(x,W)=\|x-y\|.$$
 (Federer)

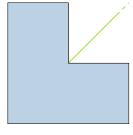
W a closed subset of \mathbb{R}^n

the reach $\tau(W)$ is the largest real number such that $d(x,W) < \tau(W) \Rightarrow \exists ! y \in W : d(x,W) = \|x-y\|.$ (Federer)

$$\tau(W) = \infty$$



$$\infty > \tau(W) > 0$$



$$\tau(W) = 0$$

 $W \subseteq \mathbb{R}^n$ closed

 $W \subseteq \mathbb{R}^n$ closed

 $\mathscr{X} \subset \mathbb{R}^n$ finite

$$W\subseteq\mathbb{R}^n \text{ closed}$$

$$\mathscr{X}\subset\mathbb{R}^n \text{ finite}$$
 assumption
$$6 \operatorname{dist}_{\mathsf{Hausdorff}}(\mathscr{X},W)<\tau(W)$$

$$W \subseteq \mathbb{R}^n \text{ closed}$$

$$\mathscr{X} \subset \mathbb{R}^n \text{ finite}$$
 assumption $6 \operatorname{dist}_{\mathsf{Hausdorff}}(\mathscr{X}, W) < \tau(W)$ conclusion For any $\delta \in \big(3 \operatorname{dist}_{\mathsf{Hausdorff}}(\mathscr{X}, W), \frac{1}{2}\tau(W)\big),$
$$\bigcup_{x \in \mathscr{X}} B_{\delta}(x) \cong W.$$

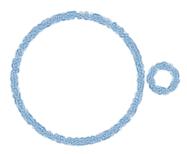
$$W \subseteq \mathbb{R}^n$$
 closed

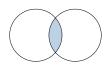
$$\mathcal{X} \subset \mathbb{R}^n$$
 finite

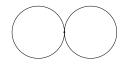
assumption
$$6 \operatorname{dist}_{\mathsf{Hausdorff}}(\mathcal{X}, W) < \tau(W)$$

conclusion For any $\delta \in (3 \operatorname{dist}_{\mathsf{Hausdorff}}(\mathscr{X}, W), \frac{1}{2}\tau(W)),$

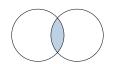
$$\bigcup_{x\in\mathcal{X}}B_{\delta}(x)\cong W.$$

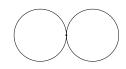




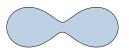


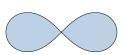
Non-transversal intersection of the boundaries

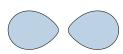




Non-transversal intersection of the boundaries







Singularity in the boundary

homogeneous setting $X \subset \mathbb{S}^n$ defined by homogeneous polynomial equations $f_1 = 0, \dots, f_q = 0$ (denoted F = 0) of degree at most D.

homogeneous setting $X \subset \mathbb{S}^n$ defined by homogeneous polynomial equations $f_1 = 0, \dots, f_q = 0$ (denoted F = 0) of degree at most D. singular solution $x \in X$ is a singular solution if the jacobian matrix $\left(\partial f_i/\partial x_j\right)_{i,j}$ is

not full-rank.

homogeneous setting $X \subset \mathbb{S}^n$ defined by homogeneous polynomial equations $f_1 = 0, \dots, f_q = 0$ (denoted F = 0) of degree at most D.

singular solution $x \in X$ is a singular solution if the jacobian matrix $(\partial f_i/\partial x_j)_{i,j}$ is not full-rank.

ill-posed problems The system F = 0 is *ill-posed* if it has a singular solution.

homogeneous setting $X \subset \mathbb{S}^n$ defined by homogeneous polynomial equations $f_1 = 0, \dots, f_q = 0$ (denoted F = 0) of degree at most D.

singular solution $x \in X$ is a singular solution if the jacobian matrix $(\partial f_i/\partial x_j)_{i,j}$ is not full-rank.

ill-posed problems The system F = 0 is *ill-posed* if it has a singular solution.

condition number $\kappa(F) = ||F|| / \text{dist}(F, \{ \text{ill-posed problems } \}).$

codimension 1

codimension 1

 $degree \leq n2^n D^n$

codimension 1

degree
$$\leq n2^nD^n$$

example A cubic plane curve:

$$a_0x^3+a_1x^2+a_2xy^2+a_3y^3+a_4x^2+a_5xy+a_6y^2+a_7x+a_8y+a_9=0$$
.
dim $\mathcal{H}=9$ and the ill-posed set is given by the following degree 12 polynomial with 2040 monomials

Distance to ill-posedness

theorem
$$\operatorname{dist}(F, \{\operatorname{ill-posed}\}) \simeq \min_{x \in \mathbb{S}^n} \underbrace{\left(\frac{1}{\|\mathbf{d}_x F^{\dagger}\|^2} + \|F(x)\|^2\right)^{\frac{1}{2}}}_{\text{vanisihes at a singular root}}$$
(Cucker)

Distance to ill-posedness

theorem dist
$$(F, \{\text{ill-posed}\}) \simeq \min_{x \in \mathbb{S}^n} \underbrace{\left(\frac{1}{\|\mathbf{d}_x F^{\dagger}\|^2} + \|F(x)\|^2\right)^{\frac{1}{2}}}_{\text{vanisihes at a singular root}}$$
(Cucker)

 $\rightsquigarrow \kappa(F)$ is easily approximable.

affine \rightarrow **spherical** Homogenize and constrain $x_0 > 0$.

affine \rightarrow **spherical** Homogenize and constrain $x_0 > 0$.

ill-posed problems W is *ill-posed* some subsystem $F \cup H$, with $H \subseteq G$, is ill-posed.

affine \rightarrow **spherical** Homogenize and constrain $x_0 > 0$.

ill-posed problems W is *ill-posed* some subsystem $F \cup H$, with $H \subseteq G$, is ill-posed.

condition number $\kappa_*(F,G) = \max_{L \subseteq G} \kappa(F \cup L)$.

affine \rightarrow **spherical** Homogenize and constrain $x_0 > 0$.

ill-posed problems W is *ill-posed* some subsystem $F \cup H$, with $H \subseteq G$, is ill-posed.

condition number $\kappa_*(F,G) = \max_{L \subseteq G} \kappa(F \cup L)$.

theorem $\kappa_*(F,G) \le ||F,G|| / \operatorname{dist}((F,G), \{ \text{ill-posed problems } \}).$

Reach and condition number

homogeneous setting $W \subset \mathbb{S}^n$ defined by homogeneous polynomial equations F = 0 and inequalities $G \ge 0$ of degree at most D.

Reach and condition number

homogeneous setting $W \subset \mathbb{S}^n$ defined by homogeneous polynomial equations F = 0 and inequalities $G \ge 0$ of degree at most D.

theorem
$$D^{\frac{3}{2}}\tau(W)\kappa_*(F,G)\geqslant \frac{1}{7}$$

Reach and condition number

homogeneous setting $W \subset \mathbb{S}^n$ defined by homogeneous polynomial equations F=0 and inequalities $G \ge 0$ of degree at most D.

$$\begin{array}{l} \text{theorem} & \boxed{D^{\frac{3}{2}}\tau(W)\kappa_*(F,G)\geqslant \frac{1}{7}} \\ \text{corollary} & \mathscr{X}\subset \mathbb{S}^n \text{ finite.} \\ & \text{For any } \delta\in \left(3\operatorname{dist}_{\mathsf{Hausdorff}}(\mathscr{X},W), \left(14D^{\frac{3}{2}}\kappa_*(F,G)\right)^{-1}\right), \\ & \bigcup_{x\in \mathscr{X}}B_{\delta}(x)\cong W. \end{array}$$

Sampling and thickening

Tentative algorithm

input
$$W = \{x \in \mathbb{S}^n \mid F(x) = 0, G(x) \ge 0\}$$

Tentative algorithm

input
$$W = \{x \in \mathbb{S}^n \mid F(x) = 0, G(x) \ge 0\}$$

1 Compute
$$\delta = \left(14D^{\frac{3}{2}}\kappa_*(F,G)\right)^{-1}$$

Tentative algorithm

input
$$W = \left\{x \in \mathbb{S}^n \mid F(x) = 0, G(x) \geqslant 0\right\}$$

1 Compute $\delta = \left(14D^{\frac{3}{2}}\kappa_*(F,G)\right)^{-1}$

2 Pick a $\frac{1}{3}\delta$ -grid \mathscr{G} on \mathbb{S}^n .

(That is, any point of \mathbb{S}^n is $\frac{1}{3}\delta$ -close to \mathscr{G} .)

input
$$W = \{x \in \mathbb{S}^n \mid F(x) = 0, G(x) \ge 0\}$$

- **1** Compute $\delta = \left(14D^{\frac{3}{2}}\kappa_*(F,G)\right)^{-1}$
- 2 Pick a $\frac{1}{3}\delta$ -grid \mathscr{G} on \mathbb{S}^n . (That is, any point of \mathbb{S}^n is $\frac{1}{3}\delta$ -close to \mathscr{G} .)
- 3 Compute $\mathscr{X} = \left\{ x \in \mathscr{G} \mid \operatorname{dist}(x, W) \leqslant \frac{1}{3} \delta \right\}$

input
$$W = \{x \in \mathbb{S}^n \mid F(x) = 0, G(x) \ge 0\}$$

- **1** Compute $\delta = \left(14D^{\frac{3}{2}}\kappa_*(F,G)\right)^{-1}$
- 2 Pick a $\frac{1}{3}\delta$ -grid $\mathscr G$ on $\mathbb S^n$. (That is, any point of $\mathbb S^n$ is $\frac{1}{3}\delta$ -close to $\mathscr G$.)
- 3 Compute $\mathcal{X} = \left\{ x \in \mathcal{G} \mid \operatorname{dist}(x, W) \leq \frac{1}{3} \delta \right\}$

output The homology of $B_{\delta}(\mathcal{X})$.

input
$$W = \{x \in \mathbb{S}^n \mid F(x) = 0, G(x) \ge 0\}$$

- **1** Compute $\delta = \left(14D^{\frac{3}{2}}\kappa_*(F,G)\right)^{-1}$
- 2 Pick a $\frac{1}{3}\delta$ -grid \mathscr{G} on \mathbb{S}^n . (That is, any point of \mathbb{S}^n is $\frac{1}{3}\delta$ -close to \mathscr{G} .)
- **3** Compute $\mathscr{X} = \left\{ x \in \mathscr{G} \mid \operatorname{dist}(x, W) \leqslant \frac{1}{3}\delta \right\}$

output The homology of $B_{\delta}(\mathcal{X})$.

correctness Niyogi-Smale-Weinberger theorem + κ_* estimate of $\tau(W)$.

input
$$W = \{x \in \mathbb{S}^n \mid F(x) = 0, G(x) \ge 0\}$$

- **1** Compute $\delta = \left(14D^{\frac{3}{2}}\kappa_*(F,G)\right)^{-1}$
- 2 Pick a $\frac{1}{3}\delta$ -grid $\mathscr G$ on $\mathbb S^n$. (That is, any point of $\mathbb S^n$ is $\frac{1}{3}\delta$ -close to $\mathscr G$.)
- 3 Compute $\mathscr{X} = \left\{ x \in \mathscr{G} \mid \operatorname{dist}(x, W) \leqslant \frac{1}{3}\delta \right\}$

output The homology of $B_{\delta}(\mathcal{X})$.

correctness Niyogi-Smale-Weinberger theorem + κ_* estimate of $\tau(W)$. efficiency How to check $\operatorname{dist}(x,W) \leq \frac{1}{3}\delta$?

input
$$W = \{x \in \mathbb{S}^n \mid F(x) = 0, G(x) \ge 0\}, \kappa_* = \kappa_*(F, G)$$

$$\text{input} \ \ W = \big\{ x \in \mathbb{S}^n \mid F(x) = 0, G(x) \geqslant 0 \big\}, \\ \kappa_* = \kappa_*(F,G)$$

$$\text{thickening} \ \ W(r) = \big\{ x \in \mathbb{S}^n \mid |f_i(x)| \leqslant r \|f_i\|, \\ g_j(x) \geqslant -r \|g_j\| \big\} \supseteq W.$$

$$\begin{aligned} & \text{input} \quad W = \big\{x \in \mathbb{S}^n \mid F(x) = 0, G(x) \geqslant 0\big\}, \, \kappa_* = \kappa_*(F,G) \\ & \text{thickening} \quad W(r) = \big\{x \in \mathbb{S}^n \mid |f_i(x)| \leqslant r \|f_i\|, g_j(x) \geqslant -r \|g_j\|\big\} \supseteq W. \\ & \text{theorem} \quad \text{If} \, r \leqslant \Big(13D^{\frac{3}{2}}\kappa_*^2\Big) \, \text{then} \\ & \qquad \qquad \boxed{\text{Tube}(W, D^{-1/2}r) \subset \underbrace{W(r) \subset \text{Tube}(W, 3\kappa_*r)}_{\text{interesting!}} \end{aligned}$$

input
$$W = \left\{x \in \mathbb{S}^n \mid F(x) = 0, G(x) \geqslant 0\right\}, \kappa_* = \kappa_*(F,G)$$
 thickening $W(r) = \left\{x \in \mathbb{S}^n \mid |f_i(x)| \leqslant r \|f_i\|, g_j(x) \geqslant -r \|g_j\|\right\} \supseteq W.$ theorem If $r \leqslant \left(13D^{\frac{3}{2}}\kappa_*^2\right)$ then
$$\text{Tube}(W, D^{-1/2}r) \subset \underbrace{W(r) \subset \text{Tube}(W, 3\kappa_*r)}_{\text{interesting!}}$$

remark $W(r) \neq \varnothing \Rightarrow W \neq \varnothing$

input
$$W = \left\{x \in \mathbb{S}^n \mid F(x) = 0, G(x) \geqslant 0\right\}, \kappa_* = \kappa_*(F,G)$$
 thickening $W(r) = \left\{x \in \mathbb{S}^n \mid |f_i(x)| \leqslant r \|f_i\|, g_j(x) \geqslant -r \|g_j\|\right\} \supseteq W.$ theorem If $r \leqslant \left(13D^{\frac{3}{2}}\kappa_*^2\right)$ then
$$\text{Tube}(W, D^{-1/2}r) \subset \underbrace{W(r) \subset \text{Tube}(W, 3\kappa_* r)}_{\text{interesting!}}$$

remark
$$W(r) \neq \varnothing \Rightarrow W \neq \varnothing$$

remark κ_* bounds the variations of W under small pertubations of the equations: it is a genuine $condition\ number$

input
$$W = \{x \in \mathbb{S}^n \mid F(x) = 0, G(x) \geqslant 0\}, \kappa_* = \kappa_*(F,G)$$

thickening $W(r) = \{x \in \mathbb{S}^n \mid |f_i(x)| \leqslant r \|f_i\|, g_j(x) \geqslant -r \|g_j\|\} \supseteq W.$
theorem If $r \leqslant \left(13D^{\frac{3}{2}}\kappa_*^2\right)$ then
$$\text{Tube}(W, D^{-1/2}r) \subset \underbrace{W(r) \subset \text{Tube}(W, 3\kappa_*r)}_{\text{interesting!}}$$

remark
$$W(r) \neq \varnothing \Rightarrow W \neq \varnothing$$

remark κ_* bounds the variations of W under small pertubations of the equations: it is a genuine *condition number*

idea Replace $\operatorname{dist}(x, W) \leq \frac{1}{3}\delta$ by $x \in W(r)$ (for a suitable r).

Covering algorithm

```
input A spherical semialgebraic set W = \{x \in \mathbb{S}^n \mid F(x) = 0, G(x) \ge 0\}
assumption \kappa_*(F,G) is finite.
       output A finite set \mathscr{X} \subset \mathbb{S}^n and an \varepsilon > 0 such that B_{\varepsilon}(\mathscr{X}) \cong W.
   algorithm
                       function Covering (F, G)
                              r \leftarrow 1
                              repeat
                                   r \leftarrow r/2
                                   Compute a r-grid \mathcal{G}_r in \mathbb{S}^n
                                   k_* \leftarrow \max\{\kappa(F \cup L, x) \mid x \in \mathcal{G}_r \text{ and } L \subseteq G\}
                              until 71D^{\frac{5}{2}}k^2r < 1
                              return the set \mathscr{X} = \mathscr{G}_r \cap W(D^{\frac{1}{2}}r) and the real number \varepsilon = 5Dk_*r
                        end function
```

Complexity analysis

computation of the covering $(sD\kappa_*)^{n^{1+o(1)}}$

```
computation of the covering (sD\kappa_*)^{n^{1+o(1)}} computation of the homology \#\mathscr{X}^{O(n)} = (sD\kappa_*)^{n^{2+o(1)}}
```

```
computation of the covering (sD\kappa_*)^{n^{1+o(1)}} computation of the homology \#\mathscr{X}^{O(n)}=(sD\kappa_*)^{n^{2+o(1)}}
```

How big is κ_* ?

```
computation of the covering (sD\kappa_*)^{n^{1+o(1)}} computation of the homology \#\mathscr{X}^{O(n)}=(sD\kappa_*)^{n^{2+o(1)}}
```

How big is κ_* ?

worst case complexity unbounded

```
computation of the covering (sD\kappa_*)^{n^{1+o(1)}} computation of the homology \#\mathscr{X}^{O(n)}=(sD\kappa_*)^{n^{2+o(1)}}
```

How big is κ_* ?

worst case complexity unbounded

average complexity unbounded ?!

Weak complexity bounds

If the average case is unbounded, is the algorithm slow?

Weak complexity bounds

If the average case is unbounded, is the algorithm slow?

example The power method for computing the dominant eigenpair of a real $d \times d$ symmetric matrix (compute $M^n x$ for large n).

Unbounded average case (Kostlan).

Used in practice with success.

Weak complexity bounds

```
If the average case is unbounded, is the algorithm slow? 

example The power method for computing the dominant eigenpair of a real d \times d symmetric matrix (compute M^n x for large n). 

Unbounded average case (Kostlan). 

Used in practice with success. 

weak complexity \cos x \le \operatorname{poly}(d) with probability x \ge 1 - \exp(-d). 

(Amelunxen, Lotz)
```

general bound If $\Sigma \subset \mathcal{H}$ is an homogeneous algebraic hypersurface, and if $X \in \mathcal{H}$ is a Gaussian isotropic random variable,

$$\mathbb{P}\left(\frac{\|X\|}{\operatorname{dist}(X,\Sigma)} \ge t\right) \le \frac{11\dim \mathcal{H} \operatorname{deg} \Sigma}{t}.$$

general bound If $\Sigma \subset \mathcal{H}$ is an homogeneous algebraic hypersurface, and if $X \in \mathcal{H}$ is a Gaussian isotropic random variable,

$$\mathbb{P}\left(\frac{\|X\|}{\operatorname{dist}(X,\Sigma)} \ge t\right) \le \frac{11\dim \mathcal{H} \operatorname{deg} \Sigma}{t}.$$

degree bound deg{ill-posed problems} $\leq n2^n(s+1)^{n+1}D^n$

general bound If $\Sigma \subset \mathcal{H}$ is an homogeneous algebraic hypersurface, and if $X \in \mathcal{H}$ is a Gaussian isotropic random variable,

$$\mathbb{P}\left(\frac{\|X\|}{\operatorname{dist}(X,\Sigma)} \ge t\right) \le \frac{11\dim \mathcal{H} \deg \Sigma}{t}.$$

degree bound deg{ill-posed problems} $\leq n2^n(s+1)^{n+1}D^n$

corollary 1 $\cos t \le (sD)^{n^{3+o(1)}}$ with probabiliy $\ge 1 - (sD)^{-n}$

general bound If $\Sigma \subset \mathcal{H}$ is an homogeneous algebraic hypersurface, and if $X \in \mathcal{H}$ is a Gaussian isotropic random variable,

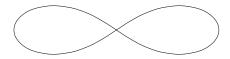
$$\mathbb{P}\left(\frac{\|X\|}{\operatorname{dist}(X,\Sigma)} \ge t\right) \le \frac{11\dim \mathcal{H} \operatorname{deg} \Sigma}{t}.$$

$$\begin{split} & \text{degree bound} & \text{deg}\{\text{ill-posed problems}\} \leqslant n2^n(s+1)^{n+1}D^n \\ & \text{corollary 1} & \cos t \leqslant (sD)^{n^{3+o(1)}} \text{ with probabiliy} \geqslant 1-(sD)^{-n} \\ & \text{corollary 2} & \cos t \leqslant 2^{O(N^2)} \text{ with probabiliy} \geqslant 1-2^{-N}. \end{split}$$

Ill-posedness is relative to a data representation

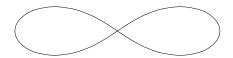
Ill-posedness is relative to a data representation

example Given by a rational parametrization, the lemniscate is well-conditionned



Ill-posedness is relative to a data representation

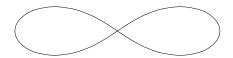
example Given by a rational parametrization, the lemniscate is well-conditionned



next goal Given $F=(f_1,\ldots,f_s)$, compute the homology of *any* set obtain from the sets $\{f_i\geqslant 0\}$ and $\{f_i\leqslant 0\}$ by union, intersection and complementation, assuming $\kappa_*(F)<\infty$. Work in progress by Josué Tonelli Cueto.

Ill-posedness is relative to a data representation

example Given by a rational parametrization, the lemniscate is well-conditionned



next goal Given $F=(f_1,\ldots,f_s)$, compute the homology of *any* set obtain from the sets $\{f_i\geqslant 0\}$ and $\{f_i\leqslant 0\}$ by union, intersection and complementation, assuming $\kappa_*(F)<\infty$. Work in progress by Josué Tonelli Cueto.

Thank you!