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Basic semialgebraic sets

definition A basic semi algebraic set is the solution set of finitely many
polynomial equation and inequations.
Picture : https://de.wikipedia.org/wiki/Steinmetz-Körper
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Semialgebraic sets in applications motion planning

J. T. Schwartz, M. Sharir, “On the pianomovers problem”
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Complexity bounds in real algebraic geometry symbolic algorithms

W ⊆Rn (basic) semialgebraic set defined by s equations or inequalities of degree D .

polynomial time algorithm

membership Decide if x ∈W

single exponential time algorithm— (sD)nO(1)

emptyness Decide ifW =∅ (Grigoriev, Vorobjov, Renegar)
dimension Compute dimW (Koiran)

#CC Compute the number of connected components (Canny,
Grigoriev, Vorobjov)

b0,b1,b2, . . . Compute the first few Betti numbers (Basu)
Euler Compute the Euler characteristic (Basu)

double exponential algorithms— (sD)2O(n)

homology Compute the homology groups ofW

CAD Compute the cylindrical algebraic decompositon (Collins)
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Approaching sets by union of balls numerical algorithms

• Homotopically equivalent to its nerve

• Combinatorial computation of the homology

• Tricky choice of the parameters:

• sufficiently many points
• radius not too small
• radius not too large

• How to quantify “sufficiently many”, “too small”
and “too large” in an algebraic setting?

• Can we derive algebraic complexity bounds for the
computation of the homology of semialgebraic
sets?
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A numerical algorithm for homology arxiv:1706.07473

input W = {
x ∈Rn

∣∣ f1(x) = ·· · = fq (x) = 0, g1(x) Ê 0, . . . , gs(x) Ê 0
}

input space H = tuples of s +q polynomial equations/inequalities
of degree at most D .

input size N = dimension of this space.

condition number κ∗ (to be defined later)

main result One can compute H∗(W ) with (sDκ∗)n2+o(1)
operations

probability measure Gaussian probability distribution

probabilistic analysis costÉ (sD)n3+o(1)
with probabiliyÊ 1− (sD)−n

costÉ 2O(N 2) with probabiliyÊ 1−2−N .

grid methods Initiated by Cucker, Krick, Malajovich, Shub, Smale, Wschebor
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Condition number



Condition number for linear systems

problem Howmuch the solution of a linear system Ax = b is affected by
a pertubation of b ?

∥δx∥/∥δb∥ É κ(A) = ∥A∥∥A−1∥
(Goldstine, von Neuman, Turing)

distance to ill-posed set κ(A) = ∥A∥/dist(A,singular matrices)

(Eckart, Young, Mirsky)

many analogues [e.g. Demmel]

Is there a considition number for closed sets?

6



Condition number for linear systems

problem Howmuch the solution of a linear system Ax = b is affected by
a pertubation of b ?

∥δx∥/∥δb∥ É κ(A) = ∥A∥∥A−1∥
(Goldstine, von Neuman, Turing)

distance to ill-posed set κ(A) = ∥A∥/dist(A,singular matrices)

(Eckart, Young, Mirsky)

many analogues [e.g. Demmel]

Is there a considition number for closed sets?

6



Condition number for linear systems

problem Howmuch the solution of a linear system Ax = b is affected by
a pertubation of b ?

∥δx∥/∥δb∥ É κ(A) = ∥A∥∥A−1∥
(Goldstine, von Neuman, Turing)

distance to ill-posed set κ(A) = ∥A∥/dist(A,singular matrices)

(Eckart, Young, Mirsky)

many analogues [e.g. Demmel]

Is there a considition number for closed sets?

6



Condition number for linear systems

problem Howmuch the solution of a linear system Ax = b is affected by
a pertubation of b ?

∥δx∥/∥δb∥ É κ(A) = ∥A∥∥A−1∥
(Goldstine, von Neuman, Turing)

distance to ill-posed set κ(A) = ∥A∥/dist(A,singular matrices)

(Eckart, Young, Mirsky)

many analogues [e.g. Demmel]

Is there a considition number for closed sets?

6



Condition number for linear systems

problem Howmuch the solution of a linear system Ax = b is affected by
a pertubation of b ?

∥δx∥/∥δb∥ É κ(A) = ∥A∥∥A−1∥
(Goldstine, von Neuman, Turing)

distance to ill-posed set κ(A) = ∥A∥/dist(A,singular matrices)

(Eckart, Young, Mirsky)

many analogues [e.g. Demmel]

Is there a considition number for closed sets?

6



Reach of a closed set

The reach of a set is its minimal distance to its medial axis.
https://en.wikipedia.org/wiki/Local_feature_size 7
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Reach of a closed set

W a closed subset of Rn

the reach τ(W ) is the largest real number such that
d(x,W ) < τ(W ) ⇒∃!y ∈W : d(x,W ) = ∥x − y∥.

(Federer)

τ(W ) =∞ ∞> τ(W ) > 0 τ(W ) = 0
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The Niyogi-Smale-Weinberger theorem

W ⊆Rn closed

X ⊂Rn finite

assumption 6distHausdorff(X ,W ) < τ(W )

conclusion For any δ ∈ (
3distHausdorff(X ,W ), 1

2τ(W )
)
,∪

x∈X

Bδ(x) ∼=W.

9



The Niyogi-Smale-Weinberger theorem

W ⊆Rn closed

X ⊂Rn finite

assumption 6distHausdorff(X ,W ) < τ(W )

conclusion For any δ ∈ (
3distHausdorff(X ,W ), 1

2τ(W )
)
,∪

x∈X

Bδ(x) ∼=W.

9



The Niyogi-Smale-Weinberger theorem

W ⊆Rn closed

X ⊂Rn finite

assumption 6distHausdorff(X ,W ) < τ(W )

conclusion For any δ ∈ (
3distHausdorff(X ,W ), 1

2τ(W )
)
,∪

x∈X

Bδ(x) ∼=W.

9



The Niyogi-Smale-Weinberger theorem

W ⊆Rn closed

X ⊂Rn finite

assumption 6distHausdorff(X ,W ) < τ(W )

conclusion For any δ ∈ (
3distHausdorff(X ,W ), 1

2τ(W )
)
,∪

x∈X

Bδ(x) ∼=W.

9



The Niyogi-Smale-Weinberger theorem

W ⊆Rn closed

X ⊂Rn finite

assumption 6distHausdorff(X ,W ) < τ(W )

conclusion For any δ ∈ (
3distHausdorff(X ,W ), 1

2τ(W )
)
,∪

x∈X

Bδ(x) ∼=W.

9



An algebraic condition number ill-posed problems

Non-transversal intersection of the boundaries

Singularity in the boundary
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An algebraic condition number real spherical varieties

homogeneous setting X ⊂Sn defined by homogeneous polynomial equations
f1 = 0, . . . , fq = 0 (denoted F = 0) of degree at most D .

singular solution x ∈ X is a singular solution if the jacobian matrix
(
∂ fi /∂x j

)
i , j is

not full-rank.

ill-posed problems The system F = 0 is ill-posed if it has a singular solution.

condition number κ(F ) = ∥F∥/dist(F, { ill-posed problems }).
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Distance to ill-posedness

theorem dist(F, {ill-posed}) ≃ min
x∈Sn

(
1

∥dx F †∥2
+∥F (x)∥2

) 1
2

︸ ︷︷ ︸
vanisihes at a singular root

(Cucker)

⇝ κ(F ) is easily approximable.

13
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An algebraic condition number spherical semialgebraic sets

homogeneous setting W ⊂Sn defined by homogeneous polynomial equations F = 0

and inequalitiesG Ê 0 of degree at most D .

affine→ spherical Homogenize and constrain x0 > 0.

ill-posed problems W is ill-posed some subsystem F ∪H , with H ⊆G , is ill-posed.

condition number κ∗(F,G) = maxL⊆G κ(F ∪L).

theorem κ∗(F,G) É ∥F,G∥/dist((F,G), { ill-posed problems }).
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Reach and condition number

homogeneous setting W ⊂Sn defined by homogeneous polynomial equations F = 0

and inequalitiesG Ê 0 of degree at most D .

theorem D
3
2 τ(W )κ∗(F,G) Ê 1

7

corollary X ⊂Sn finite.

For any δ ∈
(
3distHausdorff(X ,W ),

(
14D

3
2 κ∗(F,G)

)−1
)
,

∪
x∈X

Bδ(x) ∼=W.

15
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Sampling and thickening



Tentative algorithm

input W = {
x ∈Sn | F (x) = 0,G(x) Ê 0

}

1 Compute δ=
(
14D

3
2 κ∗(F,G)

)−1

2 Pick a 1
3δ-gridG onSn .

(That is, any point ofSn is 1
3δ-close toG .)

3 ComputeX = {
x ∈G

∣∣ dist(x,W ) É 1
3δ

}
output The homology of Bδ(X ).

correctness Niyogi-Smale-Weinberger theorem + κ∗ estimate of τ(W ).

efficiency How to check dist(x,W ) É 1
3δ?

16
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efficiency How to check dist(x,W ) É 1
3δ?
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Easier sampling

input W = {
x ∈Sn | F (x) = 0,G(x) Ê 0

}
, κ∗ = κ∗(F,G)

thickening W (r ) = {
x ∈Sn

∣∣ | fi (x)| É r∥ fi∥, g j (x) Ê−r∥g j∥
}⊇W .

theorem If r É
(
13D

3
2 κ2∗

)
then

Tube(W,D−1/2r ) ⊂W (r ) ⊂ Tube(W,3κ∗r )︸ ︷︷ ︸
interesting!

remark W (r ) ̸=∅⇒W ̸=∅

remark κ∗ bounds the variations ofW under small pertubations of the
equations: it is a genuine condition number

idea Replace dist(x,W ) É 1
3δ by x ∈W (r ) (for a suitable r ).
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Covering algorithm

input A spherical semialgebraic setW = {
x ∈Sn | F (x) = 0,G(x) Ê 0

}
assumption κ∗(F,G) is finite.

output A finite setX ⊂Sn and an ε> 0 such that Bε(X ) ∼=W .

algorithm function COVERING(F ,G)
r ← 1

repeat
r ← r /2

Compute a r -gridGr inSn

k∗ ← max{κ(F ∪L, x) | x ∈Gr and L ⊆G}

until 71D
5
2 k2∗r < 1

return the setX =Gr ∩W (D
1
2 r ) and the real number ε= 5Dk∗r

end function

18



Complexity analysis



Condition-based analysis

computation of the covering (sDκ∗)n1+o(1)

computation of the homology #X O(n) = (sDκ∗)n2+o(1)

How big is κ∗?

worst case complexity unbounded

average complexity unbounded ?!
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Weak complexity bounds

If the average case is unbounded, is the algorithm slow?

example The power method for computing the dominant eigenpair of a
real d ×d symmetric matrix (compute M n x for large n).

Unbounded average case (Kostlan).
Used in practice with success.

weak complexity costÉ poly(d) with probabilityÊ 1−exp(−d).
(Amelunxen, Lotz)
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Probabilistic analysis

general bound If Σ⊂H is an homogeneous algebraic hypersurface, and
if X ∈H is a Gaussian isotropic random variable,

P

( ∥X ∥
dist(X ,Σ)

Ê t

)
É 11dimH degΣ

t
.

degree bound deg { ill-posed problems }É n2n(s +1)n+1Dn

corollary 1 costÉ (sD)n3+o(1)
with probabiliyÊ 1− (sD)−n

corollary 2 costÉ 2O(N 2) with probabiliyÊ 1−2−N .
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Perspectives

Ill-posedness is relative to a data representation

example Given by a rational parametrization, the lemniscate is
well-conditionned

next goal Given F = ( f1, . . . , fs), compute the homology of any set obtain
from the sets

{
fi Ê 0

}
and

{
fi É 0

}
by union, intersection and

complementation, assuming κ∗(F ) <∞.
Work in progress by Josué Tonelli Cueto.

Thank you!
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