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Abstract

The 17th of the problems proposed by Steve Smale for the 21st century

asks for the existence of a deterministic algorithm computing an approx-

imate solution of a system of n complex polynomials in n unknowns in

time polynomial, on the average, in the size N of the input system. A par-

tial solution to this problem was given by Carlos Beltrán and Luis Miguel

Pardo who exhibited a randomized algorithm doing so. In this paper we

further extend this result in several directions. Firstly, we exhibit a linear

homotopy algorithm that efficiently implements a nonconstructive idea of

Mike Shub. This algorithm is then used in a randomized algorithm, call it

LV, à la Beltrán-Pardo. Secondly, we perform a smoothed analysis (in the

sense of Spielman and Teng) of algorithm LV and prove that its smoothed

complexity is polynomial in the input size and σ−1, where σ controls the

size of of the random perturbation of the input systems. Thirdly, we per-

form a condition-based analysis of LV. That is, we give a bound, for each

system f , of the expected running time of LV with input f . In addition

to its dependence on N this bound also depends on the condition of f .

Fourthly, and to conclude, we return to Smale’s 17th problem as originally

formulated for deterministic algorithms. We exhibit such an algorithm and

show that its average complexity is NO(log logN). This is nearly a solution

to Smale’s 17th problem.
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Solving polynomial systems in polynomial time?

Can we compute the roots of a polynomial system in polynomial time?

Likely not, deciding feasibility is NP-complete.

Can we compute the complex roots of n equations in n variables in polynomial time?

No, there are toomany roots.

Bézout bound vs. input size (n polynomial equations, n variables, degree δ)
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Finding one root: a purely numerical question

#rootsÀ input size To compute a single root, do we have to pay for #roots?

using exact methods Having one root is having them all (generically).

using numerical methods Onemay approximate one root disregarding the others.

polynomial complexity? Maybe, but only with numerical methods

This is Smale’s question

Now solved , let’s ask for more!
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Numerical continuation

Ft a polynomial system depending
continuously on t ∈ [0,1]

z0 a root of F0

function NumericalContinuation(Ft , z0)
t ← 0

z ← z0

repeat
t ← t + ∆t

z ← Newton(Ft , z)

until t Ê 1

return z

end function

• Solves any generic system

• How to set the step size ∆t ?

• How to choose the start system F0?

• How to choose a path?
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A short history



Average analysis

the complexity is unbounded near singular cases.
 stochastic analysis

global distribution centered Gaussian in the space of all polynomial systems

local distribution non-centered Gaussian

randomized algorithms choosing the continuation path may need randomization

Lairez (2017) this can be derandomized eliminated for average analysis

x = 0.6044025624180895161178081249104686505290197465315910133226678885000016210273264056886697260290934736

0.6044025624180895161178081249104686

truncation

0.505290197465315910133226678885000016210273264056886697260290934736

noise extraction
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Renegar (1987)

n complex variables
n random equations of degree δ
input size N

input distribution centered

# of steps poly(δn) , with high probability

starting system xδ1 = 1, . . . , xδn = 1

continuation path (1− t )F0 + tF1

previous best ∅
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Shub, Smale (1994)

n complex variables
n random equations of degree δ
input size N

input distribution centered

# of steps poly(N ) , with high probability

starting system not constructive

continuation path (1− t )F0 + tF1

previous best poly(δn)
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Beltrán, Pardo (2009)

n complex variables
n random equations of degree δ
input size N

input distribution centered

# of steps O(nδ3/2N ) , on average

starting system random system, sampled directly with a root

continuation path (1− t )F0 + tF1

previous best poly(δn) → poly(N )
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Bürgisser, Cucker (2011)

n complex variables
n random equations of degree δ
input size N

input distribution non-centered , variance σ2, really relevant to applications!

# of steps O(nδ3/2N /σ) , on average

starting system idem Beltrán-Pardo

continuation path (1− t )F0 + tF1

previous best ∅
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Armentano, Beltrán, Bürgisser, Cucker, Shub (2016)

n complex variables
n random equations of degree δ
input size N

input distribution centered

# of steps O(nδ3/2N 1/2) , on average

starting system idem Beltrán-Pardo

continuation path (1− t )F0 + tF1

previous best poly(δn) → poly(N ) →O(nδ3/2N )
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Lairez (2017)

n complex variables
n random equations of degree δ
input size N

input distribution centered

# of steps O(n3δ2) , on average

starting system an analogue of Beltrán-Pardo

continuation path ( f1 ◦u1−t
1 , . . . , fn ◦u1−t

n ), with ui ∈U (n +1)

(rigid motion of each equations)

previous best poly(δn) → poly(N ) →O(nδ3/2N ) →O(nδ3/2N 1/2)
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Improving the conditioning



How to improve the complexity?

Bymaking bigger steps!

z = the current root
ρ(F, z) = inverse of the radius of the bassin of attraction of z

µ(F, z) = sup [over F ′ ∼ F and F ′(z ′) = 0] dist(z,z ′)
‖F−F ′‖

step size heuristic
1

∆t
≈ ρ(F, z) · ∆z

∆t
/µ(F, z)︸ ︷︷ ︸

loose

·µ(F, z)︸ ︷︷ ︸
sharp

.

average analysis Each factor µ contributesO(N 1/2) in the average # of steps.
To go down to poly(n,δ), we must improve both.
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Changing the path

an old idea Can we choose a path that keeps µ(F, z) low?
i.e. that stays far from singularities?

yes! Beltrán, Shub (2009)
...but not applicable for polynomial system solving.

(Pictures by Juan Criado del Rey.) 13



Rigid continuation algorithm

input f1, . . . , fn , homogeneous polynomials of degree δ in x0, . . . , xn

1 Pick x ∈Pn(C)

2 For 1 É i É n,
a compute one point pi ∈Pn(C) such that fi (pi ) = 0

b pick ui ∈U (n +1) such that ui (x) = pi .

3 Perform the numerical continuation with

Ft =
(

f1 ◦u1−t
1 , . . . , fn ◦u1−t

n

)
.

big win the parameter space hasO(n3) dimensions,
the conditioning is poly(n) on average

total complexity O(n6δ4N ) = N 1+o(1) operation on average, quasilinear
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Toward structured systems



Why structured systems?

structures sparse
symmetries
low evaluation complexity black box

This includes most practical examples!

Traditional average analysis is irrelevant.

observation A poly(N ) complexity is far fromwhat we observe in practice.
We want poly(n,δ)cost(input)
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Black box input

input F given as a black box function

question Can we adapt the rigid continuation algorithm?
Yes! , but with small probability of failure

di�iculty Computing γ requires all coe�icients, costs N À cost(F ).

stochastic formulation γ( f , z) ≈ min
ρ>0

E
∣∣ f (z +ρw)− f (z)

∣∣
ρ2‖dz f ‖ ,

with w uniformly distributed in the unit ball.
Stochastic optimization problem
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Random black box input

input F given as a black box function, randomly distributed

question Is the average complexity poly(n,δ)cost(F )? Watch arXiv...

random black boxes What it is?
A randommodel for a black box (homogeneous) polynomial:

f (x0, . . . , xn) = trace(A1(x0, . . . , xn) · · · Aδ(x0, . . . , xn)) ,

where the Ai are r × r matrices with degree 1 entries,
coee�icients are i.i.d. Gaussian.

evaluation complexity O(r 3δ+ r 2n)

The parameter r reflects the complexity of evaluating f .
Polynomially equivalent to Valiant’s determinantal complexity.
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Thank you!

Thank you!

Thank you!
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